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Abstract

We present HotSpotter, a fast, accurate algorithm for
identifying individual animals against a labeled database.
It is not species specific and has been applied to Grevy’s
and plains zebras, giraffes, leopards, and lionfish. We de-
scribe two approaches, both based on extracting and match-
ing keypoints or “hotspots”. The first tests each new query
image sequentially against each database image, gener-
ating a score for each database image in isolation, and
ranking the results. The second, building on recent tech-
niques for instance recognition, matches the query image
against the database using a fast nearest neighbor search. It
uses a competitive scoring mechanism derived from the Lo-
cal Naive Bayes Nearest Neighbor algorithm recently pro-
posed for category recognition. We demonstrate results on
databases of more than 1000 images, producing more ac-
curate matches than published methods and matching each
query image in just a few seconds.

1. Introduction
Motivation: Conducting research on animal populations

requires reliable information on the position and movement
of individual animals. Traditionally, this information has
been obtained by attaching tags and transmitters to captured
animals. These methods do not scale well to large popula-
tions, are expensive, physically invasive, and require prox-
imity to unwilling subjects [8, 27].

The widespread availability of inexpensive, good-quality
digital cameras offers the promise of an alternative ap-
proach. Images of animals may be taken by anyone who
has a camera — scientists and their assistants, ecotourists,
and even ordinary citizens — producing the potential for
enormous flood of image data. Moreover, recent cameras
include both a clock and a GPS unit, allowing each image
to also record location and time.

Figure 1: An example of HotSpotter. The ROI is placed on a query
animal — in this case a foal — and a ranked list of matching animal im-
ages from the database is returned. Here, the correct match, an image of
the same animal as an older juvenile, is the best match (top right). The
green ellipses show the matching regions, or “hot spots”, between the two
images. Images along the bottom of the figure show significantly lower
matching scores for different animals.

Fundamentally, exploiting the wealth of photographic
data for animal population analysis depends on locating and
recognizing the animals in each image. The recognition step
requires comparing each animal image to a database of pic-
tures of animals that have already been identified, and then
either adding to the record of a previously known animal
or creating an additional record for a new individual. Even
for small populations of 100 animals, doing this comparison
manually is tedious and error prone. It does not scale at all
to large populations. Clearly, computer-based methods for
automatic animal identification are needed.

This need has spawned research on recognition of an-
imals ranging from penguins to zebras to whale sharks
[20, 2]. Some methods are species specific [5, 21, 11], while
others have strived for generality [24, 4]. In particular, the
Wild-ID algorithm of Bolger et al. [4] employs keypoint
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matching techniques from computer vision literature [13]
to determine if two images show the same animal. In our
paper, we build on more recent methods from the computer
vision literature to take an important step beyond this, cre-
ating both an improved method for matching two images
and a fast method for matching against the entire database
without sequential image-to-image matching.

Problem Statement: Our computational task is as fol-
lows. We are given a database of labeled images, where
each label identifies (names) the individual animal in the
image. The same animal may appear in more than one
database image. We keep multiple images to accommo-
date viewpoint differences and appearance changes. Given
a novel query image, IQ, and a manually-specified rectan-
gular region of interest (ROI) locating the animal in the im-
age, our goal is to assign a label to the animal in the ROI
or to decide that the animal has not been seen before. More
practically, the goal is modified slightly: to provide a set of
potential animal labels from the database ranked by a sim-
ilarity score. A high score should indicate a highly prob-
able match, while low scores should indicate improbable
matches. Figure 1 shows an example.

Three comments about this problem are appropriate.
First, user interaction is required only to select the animal
ROI in the query image and to verify the labeling results.
Ongoing work will replace both of these with more auto-
mated methods, but some user interaction will always be
necessary, both for the hardest cases and to build user con-
fidence in the system. Second, for the current work, we
assume the collection protocol has produced images all of
one flank of the animals, avoiding the ambiguity associated
with seeing two different sides of the same animal. Third,
for the experiments in this paper, the database of animal im-
ages and labels is static. In practice, however, the database
will be dynamic. We bias our selection of techniques in
light of this, and the system described here is already in use
with a changing image set. However, fully addressing the
issues of a efficiently searchable, large-scale, and dynamic
database of animal images is beyond the scope of this paper.

Algorithm Overview: We present two algorithms to
solve the animal identification problem. A high-level sum-
mary of both is: (a) for every image, the algorithms
locate keypoints and extract associated descriptors (128-
dimensional vectors), and (b) they then determine image
matches based on the comparison of these descriptors.

The first algorithm is similar to Wild-ID [4] in that it
matches the query image against each database image sepa-
rately, sorting the database images by the resulting similar-
ity score in order to generate the final ranked results. This
is our one-vs-one matching algorithm, and it contains sev-
eral minor improvements over Wild-ID that result in a more
robust algorithm.

Our second algorithm, which we refer to as the one-vs-

many algorithm, matches each descriptor from the query
image against all descriptors from the database image using
a fast, approximate nearest neighbor search data structure.
It generates scores for each database image based on these
matches, and then aggregates the scores to produce the fi-
nal, overall similarity score for each individual (each label).
In addition to introducing fast matching to the animal iden-
tification problem, our most important contribution here is
a new mechanism for scoring descriptor matches based on
the Local Naive Bayes Nearest Neighbor methods [14].

Dataset: We test our algorithms, which are currently in
use in the field in Kenya, on five different species of ani-
mals: giraffes, jaguars, lionfish, plains zebras and Grevy’s
zebras. Our most extensive databases are for the zebras, so
these are the focus of the experiments in this paper.

2. Related Work
Animal Identification: A variety of techniques have

been proposed for animal identification [5, 21, 24]. We out-
line the two most closely related in terms of feature repre-
sentation, matching, scoring, and results.

StripeSpotter [11] bases recognition on features called
stripe-codes, two dimensional strings of binary values de-
signed to capture the typical stripe patterns of zebras. Simi-
larity between stripe-codes is measured by a modified edit-
distance dynamic-programming algorithm. Queries are run
by measuring similarity to each database image individually
and returning the top matches. On a database of 85 plains
zebras, StripeSpotter achieves a median correct rank of 4.

Wild-ID [4] uses the original SIFT [13] features and de-
scriptors. It scores the query image against each database
image separately. For each feature in the query image, the
best match is found in each database image. These matches
are tested for inter-image consistency using randomly-
sampled triples of matches, a variation on more typical
RANSAC methods. The score of each database image is
the proportion of consistent triples. On a database of 100
Wildebeest images, Wild-ID achieved a false positive rate
of 8.1 × 10−4, with a false rejection rate ranging from
.06 − .08 [16]. In our one-vs-one algorithm we return to
more common methods and introduce a number of recent
innovations to produce somewhat better performance.

Turning to the computer vision literature, instance recog-
nition is the problem of finding the images in a database that
match a query image. By contrast, category recognition is
the problem of identifying the class an image belongs to —
e.g. car, person, bicycle — rather than identifying a partic-
ular instance of the class. Our problem is closely related to
instance recognition, but we are more interested in identify-
ing (labeling) the object (animal) than in finding all images.

Research in instance recognition during the last decade
has primarily focused on large-scale search, starting with
the development of visual vocabularies [23] and fast match-



ing through vocabulary tree construction [17]. Typical
methods [19] build a visual vocabulary with millions of
words and represent images as visual-word vectors. Scores
between two images are computed using the TF-IDF [23]
weighted distance between query and database visual-word
vectors. Searching large databases is done efficiently by
using an inverted file. Spatial verification re-ranks query re-
sults to produce a final ranking of matches to the database
image. Recent innovations include query expansion [6],
Hamming embedding, [9], and feature augmentation [1].
In our work, we adopt several of these features but ignore
others because (a) we are only interested in correctly iden-
tifying the animal (high precision) not finding all matching
images (total recall), and (b) we do not want to incur expen-
sive preprocessing.

Category recognition methods have tended to use dense
sets of features and descriptors [12], with much smaller vo-
cabularies than instance recognition methods. By contrast,
Boiman et al. [3] demonstrate the harmful effect of quanti-
zation and describe an alternative non-quantized approach.
Given a set of query image descriptors, for every category,
its match score is the sum of the square distances between
each query descriptor and the closet descriptor from that
category, regardless of the descriptor’s parent image. Mc-
Cann and Lowe [14] generalized this by simultaneously
matching each query descriptor to its k nearest neighbors
across all categories. Our one-vs-many algorithm applies
this technique to animal identification.

3. One-Vs-One Matching
We describe the one-vs-one algorithm first and then

present the modifications to create the faster one-vs-many
algorithm. Both algorithms consist of five steps: 1) prepro-
cessing, 2) matching, 3) image scoring, 4) spatial reranking,
and 5) label (animal name) scoring.

3.1. Preprocessing

Preprocessing involves extracting features and building
search data structures. Before feature extraction, each
database and query image is cropped to a rectangular re-
gion of interest (ROI) and resized to a standard dimension,
while preserving aspect ratio.

For image, I , either from the database or from the query,
the features are locations x of spatial and scale extrema of
the ’Hessian-Hessian’ [18] operator applied to I . This op-
erator is faster and more stable than the standard ’Hessian-
Laplace’ [15], already known to outperform the ’DoG’ op-
erator used in [4]. An elliptical shape is fit to the region
[15], represented as a matrix A = [ a 0

b c ], with orientation
angle, θ [18]. Often θ is the aggregate of gradient direc-
tions in the region surrounding x, but instead, we assume
that the “gravity vector” is downward in each image and
use this to simply assign θ = 0. Removing the invari-

ance to the gradient direction increases the discrimination
power of matching. For each region (x,A) we extract
a RootSIFT [1] descriptor, d ∈ R128, which is the the
component-wise square root of the usual SIFT descriptor
vector [13]. Using the square root de-emphasizes the larger
components in a SIFT vector, making it more resistant to
changes between images. The feature locations, elliptic re-
gions and descriptors for each image I are stored in three
sets X = {xi},A = {Ai},D = {di}.

The second part of preprocessing is the construction of
a fast search data structure. For one-vs-one matching, we
build a small forest of k-d trees [22] for the query image
descriptors using the VLFeat [25] library. Since this is a
one-vs-one algorithm it is not necessary to build a search
data structure for each of the database images.

3.2. One-vs-One Matching

Let ID be the database image, with descriptor vectors
DD, and let IQ be the query image with descriptor vectors
DQ. For each di ∈ DD, the two closest query image de-
scriptors, {qj ,qj2} ⊂ DQ are found (with high probability)
through a restricted, prioritized search of the k-d tree for-
est. Using the standard ratio-test [13], a correspondence is
formed between the i-th feature of ID and the j-th feature of
IQ only if the ratio of nearest descriptor squared distances

ri,j =
||di − qj2 ||2

||di − qj ||2
(1)

exceeds some threshold, tratio = 1.62. All such matches
are collected into a setMD = {(i, j, ri,j)}.

3.3. Initial Image Scoring

The initial image score between each database image ID
and the query image IQ depends simply on the ratios stored
in the match set, which encourages numerous distinctive
correspondences.

Sim(MD) =
∑

(i,j,ri,j)∈MD

ri,j (2)

3.4. Spatial Reranking

The initial image scores are computed without regard to
spatial constraints. To filter out any “spatially inconsistent”
descriptors we implement the standard RANSAC solution
used in [19] and described in [7]. We limit the computa-
tion to the KSR = 50 images with top initial image-scores,
Sim(MD).

To filter matches between ID and IQ, we compute a set
of spatially consistent “inliers” for every match, (i, j, r) ∈
MD using the transformation between their affine shapes,
H = A−1i Aj . More precisely, inliers are matches where
the distance of a query feature, projected by H, to its match-
ing database feature is less than a spatial threshold, tsp. We



set this to 10% of ID’s diagonal length. The largest set of
inliers is used to estimate a final homography. Inliers with
respect to this homography become the final set of corre-
spondences, M′D. Applying the image scoring function
Sim(M′D) then determines the final, spatially-reranked im-
age score.

3.5. Scoring of Labels

Because we are interested in determining a query ani-
mal’s label and because there are typically multiple images
associated with each label in the database, we must convert
the scores for each image into scores for each label. The
simplest, obvious version, which we refer to as image scor-
ing, is to select the label of the highest scoring re-ranked
image. A second method, building off intuitions from the
Naive Bayes approach to category recognition [3, 14], com-
bines the scores from all images with the same label. This
score, which we refer to as label scoring, is computed in
three steps: For each label, (a) aggregate match sets,M′D,
over all reranked images with this label, (b) for each query
descriptor, remove all but the best match, and (c) use the
value of Sim applied to this new set as the score for this
label.

4. One-Vs-Many Matching
Our one-vs-many algorithm is described relative to the

one-vs-one algorithm. These modifications give one-vs-
many a logarithmic running time in the number of database
descriptors. We achieve this by deriving a new matching al-
gorithm for multi-image search from the Local Naive Bayes
Nearest Neighbor (LNBNN) method [14].

4.1. Preprocessing For Faster Search

Feature extraction is identical to one-vs-one, but compu-
tation of the efficient search data structure is very different.

Unlike one-vs-one, no search data structure is computed
for the query image. One-vs-many preprocessing computes
one nearest neighbor data structure to index all database de-
scriptors. This is a small forest of k-d trees [22]. We refer
to the aggregate set of database descriptors as Dall.

4.2. Descriptor Matching and Match Scoring

Similar to LNBNN [14] for each query image descrip-
tor q ∈ DQ, the k + 1 approximate nearest neighbors,
{d1,d2, ...dk+1} ⊂ Dall are found by searching the forest
of k-d trees. These are ordered by non-decreasing distance
from q. Scores are computed for the first k of these (and
added to their associated images) using the squared distance
to the (k + 1)-th neighbor as a normalizer.

Looking at this intuitively, if there were just one database
image, then we would be in the same scenario as the
one-vs-one matching, except with the roles of the query

and database images reversed, and our scoring mechanism
should reflect this. On the other hand, in the usual case
where there are many more than k database images, every
query descriptor will only generate scores for (at most) k of
them. Matches for database descriptors whose distances are
beyond the k, just like matches whose ratio scores are be-
low the ratio cut-off in one-vs-one matching, are considered
non-distinct and (implicitly) given a score of 0.

We present four scoring methods, using δ to denote the
score instead of r (Equation 1):

1. Applying the measure from LNBNN [14] (modified to
a maximization), we define:

δLNBNN(q,dp,dk+1) = ||dk+1−q||2−||dp−q||2 (3)

This is just the difference in distances between the p-
th and (k + 1)-th nearest neighbors. It tends towards
0 when the normalizing feature is numerically close to
the matching feature (hence not distinct).

2. We generalize the ratio score in Section 3.2 to k nearest
neighbors:

δratio(q,dp,dk+1) =
||dk+1 − q||2

||dp − q||2
(4)

Note that when k = 1, this is like the ratio test, but
applied across all database images, not just one.

3. We introduce a log-ratio score to drive the previous
score to 0 when the matches are non-distinct:

δlnrat(q,dp,dk+1) = ln(
||dk+1 − q||2

||dp − q||2
) (5)

4. As a sanity check we use match counting:

δcount(q,dp,dk+1) = 1 (6)

If q is the j-th query image descriptor and if the p-
th closest descriptor is at descriptor index i in its original
database image, ID, then triple (i, j, δ(...)) is appended to
the match set MD for ID. Overall, if there are M query
image descriptors, then Mk scores are generated and dis-
tributed across all database images.

Once matching is complete, the initial image scoring
(Sec. 3.3), spatial reranking (Sec. 3.4) and scoring of labels
(Sec. 3.5) are all applied, just as in the one-vs-one algo-
rithm.

4.3. Scaling to extremely large databases

Our nearest neighbor methods are much simpler than the
usual TF-IDF scoring mechanism used in large-scale in-
stance recognition, avoiding the expensive off-line subcom-
putation of building the vocabulary and inverted-file struc-
ture [19]. If we can demonstrate that these are effective,



Species Number of Average Number of
Images Labels Descriptors per Image

Grevy’s 1047 592 837.6
Plains 824 86 403.6

Jaguars 45 21 2660.5
Giraffes 45 15 1418.3
Lionfish 13 5 1183.3

Table 1: Dataset statistics

we will have taken a strong step toward a flexible, dynamic
database. One drawback to our approach, however, is that
each of the original descriptor vectors is stored in memory
as opposed to quantized vectors.

To address this problem, we investigate replacing our k-d
tree indexing of database descriptor vectors with the prod-
uct quantization technique introduced by Jégou et al. [10].
Product quantization is a method of computing approxi-
mate nearest neighbors by splitting a (descriptor) vector
z = (z1, z2, . . . , zn) into m subvectors (u1, ...,um), each
of which is quantized individually with a relatively small,
separate vocabulary. The trick is that the representation is
very small, but the implicit vocabulary (number of distinct
vectors) is enormous. We use m = 16 making each ui

length 8, and quantize at 128 words per subvector. This
structure represents 5×1033 distinct vectors and is 16 times
smaller than the k-d tree forest representation. We explore
the effects of this technique on match quality.

5. Experimental Results and Discussion
All results were generated with MATLAB running on

an i7-2600K 3.4GHz processor. We used the open source
C implementations of kd-trees in VLFeat [25] and feature
extraction from Perdoch [18]. We were provided with five
datasets to test the HotSpotter algorithms. We thank the
Rubenstein team in Kenya for the large Grevy’s and plains
datasets as well as giraffes; Marcella Kelly for jaguars, and
Juan David González Corredor for lionfish. Summaries of
each are provided in Table 1, and examples of each are in
Figure 2.

5.1. Data Sets

Grevy’s zebras are an endangered species with a small
but stable population ≈ 3, 000 [26]. They are characterized
by a thin narrow stripe pattern, which produces many sta-
ble keypoints along the shoulder and rump, and sometimes
flank. This dataset has been built from photos taken over
several years and contains images of animals as both juve-
niles and adults, making it our most challenging set.

Plains zebras are abundant and widespread. Having
coarse and thick stripe patterns, they would seem to gener-
ate a comparatively low number of distinguishing markings
for recognition, and indeed they generate the fewest key-
points / descriptors . Most images in this dataset were taken

within seconds of each other, however, leading to very little
variation in either appearance or viewpoint.

Jaguars, giraffes, and lionfish are smaller datasets used
to test HotSpotter’s generalization to other species. The
jaguar images were taken from camera traps, are of low im-
age quality, and sometimes show variations in viewpoint.
This difficulty is offset by a large number of distinguishing
spots. Giraffes and lionfish, forming smaller datasets here,
are primarily taken from the same viewpoint.

5.2. Experiments

In every test configuration we take each database image
with a known match and issued it as a query. (We take care
to ignore-self matches; thus removing the need to reindex
search structures.) Knowledge of the correct matches al-
lows us to gather numerical results. (Interestingly, the soft-
ware enabled us to catch and fix several ground-truthing er-
rors.)

Results of running various configurations of HotSpotter
on the larger Grevy’s and plains zebras sets are summarized
in Tables 2 and 3. The first three columns of each table
summarize the algorithm configuration. Columns 4 and 5
give the number of queries for which the correct label is
not the first label returned for label scoring (Column 4) and
image scoring (Column 5) — see Sec. 3.5. This gives the
overall accuracy of the system. Columns 6 and 7 give label
scoring and image scoring for queries where the returned
rank is above 5. This represents a “usability” measure since
it is unlikely that a user will scan beyond the first five labels.
Finally, the last column in the tables is the query time per
image in seconds.

Each row of Tables 2 and 3 gives a different algo-
rithm configuration, with the primary variations being be-
tween the one-vs-one algorithm and the one-vs-many algo-
rithm and, within the one-vs-many algorithm, the number
of neighbors returned, the scoring function δ, and whether
or not product quantization is used. In addition, the default
is for 50 images to be reranked, so the notation +R0 and
+RA in the first and last rows of the tables mean, respec-
tively, that no images and all images are reranked. Finally,
in all cases except those labeled +S, Root-SIFT descriptors
are used.

Results on the giraffes, leopard and lionfish datasets are
provided in Table 4 in a much reduced form since these are
easier and less extensive. The table includes a comparison
to Wild-ID [4].

5.3. Results

Overall, the results are quite strong. We achieve perfect
results for the giraffe, jaguar, and lionfish datasets. On the
Grevy’s data set, in the best configuration, HotSpotter pro-
duces correct top-ranked labels for 95% of the queries, and
a top-five label for 98%. For the plains zebras dataset, these



Figure 2: Correct matches. The top images are queries and the bottom images are top results. Wild-ID failed on jaguar and lionfish examples.

Algorithm: k δ Rank > 1 Rank > 5 TPQ
label image label image (sec)

1v1+R0 1 ratio 33 25 11 8 78.8
1v1 1 ratio 26 24 6 7 72.2

1vM 1 ratio 33 36 8 5 4.0
1vM 1 lnrat 32 34 6 5 4.0
1vM 1 count 27 28 7 9 3.9
1vM 1 LNBNN 40 47 8 9 4.0

1vM+PQ 1 LNBNN 152 173 92 92 5.6
1vM 5 ratio 37 34 5 6 3.4
1vM 5 lnrat 34 33 5 5 3.8
1vM 5 count 32 36 7 7 3.6
1vM 5 LNBNN 39 41 4 5 3.7

1vM+PQ 5 LNBNN 41 49 13 13 4.5
1vM 10 ratio 38 35 6 6 3.5
1vM 10 lnrat 33 33 4 5 3.8
1vM 10 count 32 36 8 7 3.7
1vM 10 LNBNN 39 41 4 5 4.0

1vM+PQ 10 LNBNN 43 51 14 16 4.5
1vM 20 ratio 38 36 6 6 3.4
1vM 20 lnrat 32 31 5 5 3.7
1vM 20 count 32 36 8 7 3.6
1vM 20 LNBNN 38 41 6 6 3.8

1vM+PQ 20 LNBNN 43 51 15 16 4.6
1vM+S 1 lnrat 33 35 6 7 3.8
1vM+S 1 LNBNN 40 45 7 7 3.7

1vM+R0 1 lnrat 34 36 7 5 1.5
1vM+RA 1 lnrat 32 34 6 5 44.6

Table 2: Results on 657 Grevy’s queries and different algorithm configu-
rations. The notation for the first column of the table indicates one-vs-one
(1v1) matching, one-vs-many (1vM) matching, product quantization (PQ),
whether no images were reranked (R0), whether all were reranked (RA),
and if original SIFT descriptors (S) are used in place of Root-SIFT. The
column labeled k indicates the number of nearest neighbors scored for
each query descriptor. The column labeled δ indicates the choice of match
scoring function. The results are show in the right five columns, summa-
rizing the label rankings for label scoring and image scoring, and giving
the query time.

numbers are both well over 99%.
More specific observations about the results are as fol-

lows:

• One-vs-many is on par with one-vs-one matching, but
many times faster.

Algorithm: k δ Rank > 1 Rank > 5 TPQ
label image label image (sec)

1v1+R0 1 ratio 9 5 5 3 41.0
1v1 1 ratio 7 4 3 3 38.2

1vM 1 ratio 6 2 3 2 2.6
1vM 1 lnrat 7 4 2 1 2.6
1vM 1 count 6 3 2 2 2.6
1vM 1 LNBNN 6 5 1 1 2.5

1vM+PQ 1 LNBNN 25 29 15 15 2.7
1vM 5 ratio 7 3 3 2 2.2
1vM 5 lnrat 5 3 2 2 2.3
1vM 5 count 8 4 3 2 2.4
1vM 5 LNBNN 6 3 2 2 2.6

1vM+PQ 5 LNBNN 7 7 3 4 3.1
1vM 10 ratio 7 3 3 2 2.3
1vM 10 lnrat 7 3 3 2 2.2
1vM 10 count 8 4 3 2 2.5
1vM 10 LNBNN 7 3 2 2 2.4

1vM+PQ 10 LNBNN 7 7 2 3 3.3
1vM 20 ratio 7 3 3 2 2.3
1vM 20 lnrat 7 3 3 2 2.2
1vM 20 count 8 4 3 2 2.5
1vM 20 LNBNN 7 5 3 2 2.6

1vM+PQ 20 LNBNN 7 6 2 3 3.3
1vM+S 1 lnrat 7 4 3 2 2.4
1vM+S 1 LNBNN 6 6 2 2 2.5

1vM+R0 1 lnrat 7 5 4 3 0.7
1vM+RA 1 lnrat 6 4 3 2 30.4

Table 3: Results on 819 plains zebras queries using the same notation at
in Table 2.

• Product quantization rankings are substantially im-
proved by increasing k from 1 to 5. We attribute this
improvement to an increased k overcoming some of
the effects of quantization; beyond k = 5 there is no
improvement. For the other algorithms and configura-
tions, setting k = 1, which is effectively a multi-image
generalization of Lowe’s ratio test, works as well as
any value of k.

• The choice of scoring function δ does not make a sub-
stantial difference in the algorithm, and even the sim-
ple counting function works well.



Algorithm: k δ Rank > 1 Rank > 5 TPQ
label image label image (sec)

Dataset: Giraffes
1v1+RA 1 ratio 1 0 1 0 3.3
1vM+RA 1 ratio 1 0 0 0 1.1
Wild-ID – – – 4 – 1 0.5

Dataset: Jaguars
1v1+RA 1 ratio 1 0 0 0 6.2
1vM+RA 1 ratio 1 0 0 0 2.0
Wild-ID – – – 3 – 2 2.6

Dataset: Lionfish
1v1+RA 1 ratio 0 0 0 0 0.7
1vM+RA 1 ratio 0 0 0 0 0.7
Wild-ID – – – 1 – 0 1.5

Table 4: Results on giraffes, jaguars, and lionfish with 38, 35, and 13
queries, respectively.

• Numerically, the difference between label scoring and
image scoring (Sec. 3.5 is minor, with small variations
in either direction occurring with different algorithm
configurations. Interestingly, it appears that one place
label scoring does make a difference is matching im-
ages of foals as they grow and change toward adult-
hood.

• Spatial reranking only marginally improves rankings,
more so for the one-vs-one algorithm.

• Unlike results reported in [1], Root-SIFT has no signif-
icant advantage over standard SIFT for our data sets.

Combined, these observations suggest that the biggest rea-
son for success is the shear number of matches from dis-
tinctive regions of an animal. The descriptors (“hotspots”)
tend to be distinctive across many different animals, effec-
tively creating a signature for that animal. This appears to
be true for all five species that we experimented with. Even
for the simple counting algorithm, the insensitivity to k is
because the incorrect descriptor matches are uncorrelated
across in the database. This slightly increases the noise in
the scoring, but not enough to challenge the correct scores.

As shown in Table 4, Wild-ID is faster than the one-
vs-one version of HotSpotter, but missed matches that
HotSpotter finds. Two cases where Wild-ID fails are seen in
Figure 2. Since Wild-ID is structurally similar to HotSpot-
ter in its one-vs-one configuration, we attribute these suc-
cesses primarily to the denser, affine-invariant keypoints
and descriptors. Although Wild-ID is faster than one-vs-
one, this is largely due to it being multi-threaded and imple-
mented in Java instead of MATLAB.

5.4. Failure Cases

Further insight into HotSpotter can be gained through an
analysis of failures. We closely analyzed the 34 Grevy’s

Figure 3: Three example failures. In the top example, the same back-
ground is seen (red matches) in two images showing different zebras. In
the middle, the viewpoints are too different between the query image and
the correct database image (green matches), and a different image is the top
match. On the bottom, the poor illumination of the query image produces
too few keypoints (small circles in the images) for correct matching.

queries which produce a rank greater than one for one-vs-
many with k = 5 and δ = lnrat. In 2 cases the database
contained a mislabeling, and in 5 cases the ROI covered
two animals and matched the unlabeled animal. In 13 other
cases, the background scenery was matched instead of the
foreground zebra region. A classifier that weights a descrip-
tor according to how likely it is to be a zebra should fix this
problem. Of the remaining 14 cases, 8 failed because of
substantial pose variations between query and database ze-
bras, and the rest because of image quality, including focus,
resolution and contrast. Examples are shown in Figure 3.



6. Conclusion

We have presented HotSpotter, an algorithm for fast, reli-
able, multi-species animal identification based on extracting
and matching keypoints and descriptors. In addition to the
construction and testing of the overall system, the primary
technical contribution of our work is the development of
a fast and scalable one-vs-many scoring mechanism which
outperforms current brute force one-vs-one image compar-
ison methods in both speed and accuracy. The key to the
success of HotSpotter is the use of viewpoint invariant de-
scriptors and a scoring mechanism that emphasizes the most
distinctiveness keypoints and descriptors by allowing only
the k nearest neighbors of any descriptor to participate in
the scoring. This has been borne out on experiments with
Grevy’s zebras, plains zebras, giraffes, leopards and lion-
fish.

From the perspective of the application, the failures are
generally manageable through human interaction to elimi-
nate problems due to (a) ROIs that overlap multiple animals,
(b) matching against background, and (c) poor quality im-
ages. Additional algorithms could help identify and elim-
inate these problems as well. Other failures — those due
to viewpoint variations — are the most difficult to handle.
The best way to address this is to incorporate multiple im-
ages and viewpoints into the database for each animal.

Looking toward future experimental work, we will apply
the software to a wider variety of species, which will test
the limit recognition based on distinctive feature matching.
From the perspective of both the algorithm and the practical
application, the next major step for HotSpotter is to build
and manage a dynamically constructed database of animal
images and labels. This is the focus of our ongoing effort.
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