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ABSTRACT

Animal population monitoring is hard to do at large scales. It is too logistically demanding to

track thousands of animals with invasive tools like ear tagging, and methods like aerial surveys

and hand-based counts cannot track individuals over time. A database of unique animals and

their sightings can be a critical tool for conservation; ecologists gain a more intimate and timely

understanding of an endangered species’ health when they can estimate life expectancy, visualize

migration patterns, and quickly measure the effects of conservation policies.

This dissertation proposes photographic censusing, a way to visually track the population

of an entire species with as little human effort as possible. The method is based on a two-day

event called a photographic censusing rally, formed as a sight-resight study (building off of mark-

recapture) to estimate the size of the population. Photographic censusing is highly automated, is

designed to be bootstrapable for new species, and uses citizen scientists to collect large volumes

of photographs across a large geographic area. A novel 5-component animal detection pipeline is

proposed to analyze collected images of animals and filter sightings of animals for ID. The pipeline

offers a whole-image classifier for quick filtering, a bounding box localizer to find annotations, an

annotation labeler to determine species and viewpoints, a coarse segmentation algorithm to mask

the background, and a component to recognize poor sightings, and is evaluated on new datasets.

This research also presents the Great Grévy’s Rally (GGR) results from 2016 and 2018. These

censusing events attempted to catalog the entire resident population of Grévy’s zebra (Equus grevyi)

in Kenya and, combined, collected over 90,000 images from more than 350 volunteers. The GGR

analysis in 2018 was done with automated tools but still required large amounts of work ( 18,500

human decisions), cost USD $50,000+, and took over three months. This dissertation discusses

the work needed during a photographic census and analyzes failure modes that require human

interaction. The novel concept of Census Annotation (CA) is introduced to find comparable regions

of animals for automated ID, which drastically increases automation. The 56,588 images from

GGR 2018 were reprocessed with the latest recommended methods presented in this work; 11,916

annotations were automatically found for comparable, right-side Grévy’s zebra; ID curation used

1,297 human decisions before converging, and 2,820±167 Grévy’s zebra were estimated to be in

Kenya in 2018. This result is consistent (within 0.3% of the original estimate of 2,812±171) with

previous estimates on GGR 2018 data and was achieved with a 93% reduction in human effort.
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CHAPTER 1

INTRODUCTION

How many Grévy’s zebra are in Kenya?

The Grévy’s zebra (Equus grevyi), as seen in Figure 1.1, was last assessed in 2016 as Endangered

by the IUCN Red List1. This crucial designation marks the estimated probability of extinction for

this species at 20% (or above) over the next five generations. The population in the late 1980s

was estimated to be around 5,800 animals, whereas the population today is believed to be about

half that number [1]. As with all species, the apparent health of the Grévy’s zebra population is

linked to its total number of members. Agonizingly, however, their population numbers have not

been tracked closely or consistently within Kenya, their primary country of residence. This lack of

clarity presents a literal existential challenge for conservationists, where having access to a reliable,

species-level population estimate is foundational to evaluating the impact of conservation policy

and monitoring the growth or decline of the species.

To better track its overall health, we would ideally like to perform a census of the entire

species and be able to do it routinely. A census is distinct from a simple count as the former

tracks individual animals over time2. For example, a census allows researchers to estimate the

population size, but it also gathers data that can be used to answer important ecological questions

like, “where are the animals migrating to and from?”, “what areas are isolated by geography or

human development?”, “who are the members of an animal’s social group, and do those groups

change?” or a question as basic as “what is the average life expectancy in the wild?” These questions

are hard to answer if we only count and record the number of animals seen at a given place and

time [3]–[9]. Anonymity is what limits the usefulness of animal population monitoring. A regular

census of known individuals allows for a more intimate and up-to-date understanding of the animal

population, which is critical when a species is threatened.

Biologists have long used physical tagging to track individuals and estimate animal population

1IUCN Red List for Grévy’s Zebra: https://www.iucnredlist.org/species/7950/89624491 (Ac-
cessed: Oct. 29, 2021).

Portions of this chapter previously appeared as: J. Parham and C. Stewart, “Detecting plains and Grevy’s zebras in
the real world,” in IEEE Winter Conf. Applicat. Comput. Vis. Workshops, Lake Placid, NY, USA, Mar. 2016, pp. 1–9.

Portions of this chapter previously appeared as: J. Parham, J. Crall, C. Stewart, T. Berger-Wolf, and D. I. Rubenstein,
“Animal population censusing at scale with citizen science and photographic identification,” in AAAI Spring Symp., Palo
Alto, CA, USA, Jan. 2017, pp. 37–44.

2This discussion borrows language commonly used for people; for simplicity, it refers to animals as “individuals”.
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Figure 1.1: An image of a Grévy’s zebra in Kenya. Grevy’s zebra have thin stripes across the
body and a white underbelly. Approximately 90% of the world’s Grévy’s zebra
are located in Kenya [1].

sizes. One of the most popular and prevalent techniques for producing a population size estimate

is capture-mark-recapture [10], [11] (or simply “mark-recapture”). Mark-recapture is a sampling

technique that starts with an initial capture of the animal population. A second independent capture

of the same population is then performed. The number of recaptured animals between the first

and second collections is used to estimate the number of animals that were not captured at all. An

ecologist may choose to mark the animals from the first capture with paint or use some other type of

physical tag to know which animals have been seen before. Performing this kind of detailed mark-

recapture study can be prohibitively demanding when the number of individuals in a population

grows too large, the population moves across too large of a distance, or the species is difficult to

capture due to evasiveness or habitat inaccessibility [12]. Moreover, marking with physical tagging

methods like ear tags, metal bands, ear notches, skin branding, or GPS collars can be unreasonably

invasive, laborious, expensive, or alter the animal’s behavior. These challenges limit how often

mark-recapture studies are performed and how comprehensively they can sample the population.

Instead, we would prefer to leverage an animal’s intrinsic appearance to “mark” if it has

been seen before, taking advantage of a faster and more passive capture process: sight. A better

version of mark-recapture can be created that is based on sights and resights of animals while

still relying on the same underlying methodology for estimating the population size. Suppose the

visual appearances are unique for each animal in a population and that humans can distinguish two

animals based only on their natural markings. In that case, a sight-resight study can be used to track
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Table 1.1: A comparison of photographic censusing to existing population estimation
methodologies demonstrates that it is better for large animal populations.

Traditional Methods Photographic Censusing
invasive passive

ear notches, tags, radio collars appearance-based with computer vision,
tranquilizers and veterinary services does not influence behavior of animals

expensive inexpensive
logistically demanding on research distributed, can utilize volunteers

staff and park rangers, requires and tourists, specialized equipment
specialized equipment and training and training not required

error-prone evidence-based
double counting, human machine learning and computer vision,

interpretation of data required, data-driven decisions, human-in-
tedious verification the-loop verification, statistical estimate
one-time analysis recurring

difficult to repeat over time, allows for tracking individuals over
based on verbal reports time, ecological trends are available,

cannot audit later audit with newer algorithms
Infeasible for large populations Ideal for large populations

encounters of new and known individuals. In short, if we apply this idea to Grévy’s zebras, we can

think of them almost as walking fingerprints. Just like human thumbprints are unique and linked

to a person’s identity, the stripe patterns on the side of a zebra are distinctive and unique to that

individual. While it is clear that appearance-based ID will not work universally for all species (e.g.,

a brown squirrel or the skin of a sleek, grey dolphin), we can expect that a giraffe’s unique blanket

of brown patches, or the intricate layout of scutes on a sea turtle’s flipper, or the jagged outline of a

whale fluke can be used to recognize and distinguish unique animals.

Expecting a person to remember and recognize hundreds – let alone thousands – of individuals

by sight is unrealistic. Therefore, some method of cataloging is needed to help keep records of

the animals that have been seen. As the catalog grows, however, the amount of work required

to keep tabs on an ever-increasing number of animals can become too demanding or error-prone.

Doing this work by hand with notes or physical pictures is therefore not a scalable solution. One

straightforward option is to use computational aides that can help store, sort, retrieve, compare, and

curate a digital catalog (i.e., a database) of the different encountered animals. Digital photographs

are ideal when building such an appearance-based digital catalog of animal IDs as they are easy to
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capture and store. Furthermore, taking a photograph of an animal allows for the passive collection

of its identifying information and provides a piece of evidence for who, when, and where that

individual was seen. A digital image is convenient not only because humans or algorithms can

review it to build the database, but it can also be retrieved and re-examined in the future. An audit

cannot be done with hand-written accounts for the number of animals in an area.

The transition towards using computers and digital photography, by itself, does not change

the underlying amount of work that is needed to manage the catalog. However, as alluded to earlier,

automation is needed to make the workload manageable. A primary benefit of using digitized

photographic data is that computer vision algorithms can automate laborious tasks. This dissertation

introduces the novel concept of photographic censusing, a comprehensive and bootstrapable process

that uses 1) digital images of animals as input, 2) computer vision algorithms to automate the vast

majority of the work needed from humans, and 3) a database to record unique individuals and

their respective sightings. Photographic censusing is designed to be scalable; a large geographic

area can be surveyed by adding additional, independent photographers, and the method has been

experimentally validated in situ for large animal populations with thousands of members. Table 1.1

provides a summary of photographic censusing and a comparison to existing methods.

1.1 Animal Detection

Two high-level computer vision components, detection and identification (ID), are required

to perform an automated census of animals from photographs. Most of the attention is paid to

state-of-the-art identification algorithms in animal censusing, but the role of detection is vital as a

required pre-condition for ID, and it is considered carefully here. The detection component analyzes

the original photographs and produces a collection of smaller, more focused cropped regions –

called annotations – around the animals that are of interest for the census. The identification process

then takes the annotations and groups them into a database of unique individuals. The detection

component must be able to do the following tasks automatically:

1. locate an indeterminate number of animals in a photograph,

2. determine if the animal is relevant to the census (e.g., the desired species),

3. remove visual information that may distract or otherwise confuse identification, and

4. filter out animals that are ultimately not identifiable (not useful in a census).
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Figure 1.2: An image of a herd of Grévy’s zebra in Kenya. The computer vision task of
detection is very challenging when considering overlapping animals, each with a
different pose and level of occlusion. The red boxes are identifiable animals
whereas the orange boxes have a hip or shoulder region obscured (both of which
are required for reliable and automated ID). All other animals are too occluded or
truncated to be identified.

To achieve these requirements, we need to expand the classic definition of object detection in

computer vision. Object detection typically refers to the task of placing bounding boxes around all

objects of interest in a photograph. This formulation places too much importance on completeness.

For example, consider Figure 1.2 which shows a dense herd of 15 Grévy’s zebras3. What is to be

considered the “correct” output of an object detection algorithm for this image? The traditional

answer would be to produce a complete set of bounding boxes for each of the 15 animals regardless

of their size and clarity. However, this would be inappropriate for use in a census because not all

animals are identifiable. For example, the obscured animals behind the bush on the left side of the

frame are not seen clearly and should not be provided to an appearance-based identification process.

A more suitable definition of object detection would be aware that some annotations are not

worth trying to find, recognizing that it is safe to ignore animals that are ultimately not going to

be identifiable. For example, in Figure 1.2 the two most foreground animals (bordered in red) are

reliably identifiable, with three additional annotations (orange) that may be identifiable in some

3The reader is encouraged to try and count the number of animals, including the sliver of an animal on the far left.
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cases. All other animals and detections in this image should be considered distractions. A detection

process optimized for use in a photographic census should only produce the 2-5 highlighted boxes

as output. The detection process also needs to recognize the species, and even the viewpoint, of

interest for a census. Just as people’s left and right thumbprints are different, the visual appearances

on an animal’s left and right sides are different. It would be imprudent for an identification process

to compare one person’s left thumbprint against another person’s right thumbprint because they

are fundamentally incomparable. Likewise, how could you tell if a right viewpoint zebra and a

left viewpoint zebra were the same animal? Without being able to view the same areas on the

bodies and compare corresponding stripe patterns, you would likely be unable to decide yes or no.

The detector needs to go beyond simply creating annotations and should actively try to prevent

incomparable matches. The detection process is expected to provide a semantic understanding of

the annotations given to ID and filter them appropriately to reduce errors and prevent the need for a

human to intervene.

An appearance-based identification process can also be fairly sensitive to poorly-formed

annotations. One example is a “photobomb”, as seen in Figure 1.3. A visual matching algorithm

called HotSpotter [13] (discussed later in this dissertation) was used to search a database of

annotations for likely matches, and this pair was returned with a high score. It is clear that the

identification process is correctly matching the appearance of the same animal between these two

annotations, but not between the intended (or primary) animals those annotations are meant to

represent. The error that identification has made is understandable – and from its perspective of

finding visual correspondences between two annotations is perfectly valid – but ultimately incorrect.

The error is possible because the ID algorithm lacks a deeper semantic understanding of which

areas (and animals) are being matched. In contrast, we can also frame this example as a failure

of detection to properly limit the visual appearance to only the most relevant and comparable

regions. If the bottom image were cropped to exclude the animal to the right and focus on the body

region, this visual match would not have been made. Reducing these types of “incidental matches”

improves the overall automation of the identification process because when failures like this happen,

it is often left to a human reviewer to find and fix the issue.

In summary, animal detection is tasked with providing a semantic but filtered understanding

of the world to ID. There is a trade-off between producing relevant, identifiable, and comparable

annotations and the amount of work needed to find and fix mistakes poor annotations cause during

identification. Accordingly, filtering out irrelevant, unidentifiable, or incomparable annotations is
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Figure 1.3: An example of a Grévy’s zebra photobomb. A photobomb occurs when the same
animal is matched between two annotations but the primary animal in both
annotations is different.

similar to pretending the sighting of that animal never happened in the first place. Since photographic

censusing, as a sight-resight study, is based on sampling, it does not expect every animal in the

population to be photographed. We can thus rely on filtering to control the completeness of the

analysis and balance it against the amount of work humans need to do to produce the population

estimate.

1.2 Contributions

This dissertation presents an end-to-end process for animal population monitoring at scale.

High degrees of automation, and bootstrapable machine learning components, allow photographic

censusing to be performed quickly and accurately, enabling a new and realistic option for data-driven

animal conservation. This dissertation offers the following contributions:
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1. Animal Detection Pipeline - a comprehensive detection pipeline for animals for use in

photographic censusing. The pipeline is designed to be easily bootstrapable for new species

with relatively minimal amounts of ground truth annotations. The pipeline is constructed

out of modularized components, including a whole-image classifier, an annotation and part

bounding box localizer, a bounding box orientation regression network, an annotation species

and viewpoint labeler, an annotation-part assigner, a coarse background segmentation network,

and an Annotation of Interest (AoI) classifier. The pipeline is not limited to Grévy’s zebra or

herding species and can even be used with multiple species of interest in the same image, on

overhead imagery, and with camera trap data. The discussion throughout will use Grévy’s

zebra as a motivating example due to the availability of large-scale and novel ground-truth

detection and ID datasets.

2. Animal Datasets - five new public datasets for animal detection and ID research. Common

public datasets for computer vision tasks like object detection generally do not provide

associated ID information when they include boxes of animals. Likewise, animal ID datasets

often only include pre-cropped images of animals and rarely focus on herding species.

The largest contributed dataset focuses on Grévy’s zebra IDs and is highly curated. The

dataset aggregates 5,464 real-world images taken from two large censusing rallies, includes

hand-drawn and labeled annotations for Grévy’s zebra and 22 other species, and provides

ground-truth ID labels for 554 unique animals. Two detection datasets are also made available

that have ground-truth bounding boxes and other metadata for multiple species. Lastly, the

GGR-16 and GGR-18 datasets will also be made available for ecological research.

3. Census Annotation - a novel concept that is designed to reduce incomparable and incidental

matching during animal identification. The concept is implemented with two components: 1)

a Census Annotation (CA) classifier and 2) a Census Annotation Region (CA-R) regression

network. The CA classifier filters out unidentifiable annotations and allows ID only to see

the most identifiable annotations during a photographic census. The CA-R network creates

more focused regions within existing detected annotations, drastically reducing the amount of

human effort by increasing the separability of automated ID verifiers.

4. Photographic Censusing Rallies - an organized data collection event where “citizen scientist”

volunteer photographers are trained and tasked to take photos of animals for two back-to-back

days. The results of the Great Grévy’s Rally 2016 (GGR-16) and Great Grévy’s Rally 2018
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(GGR-18) censusing rallies are significant contributions of this work. Those two rallies are a

refinement and extension of the proposed methodology used during the Great Zebra & Giraffe

Count (GZGC), the focus of the author’s master’s thesis [2]. The GGR-16 and GGR-18

rally procedures were significantly improved by increasing the automation of the detection

and identification processing, streamlining data collection with GPS-enabled cameras, and

proving that the original methodology scales to thousands of animals. In addition, the GGR

events collected nearly an order of magnitude more images with twice as many contributors

than the GZGC. As a result, they offer the ideal database and framework for analyzing the

impact of the automated detection pipeline and CA on real-world data.

Lastly, here is a brief overview of the impact of the methods introduced in this work. The

original processing of the GGR-16 and GGR-18 census results was completed with large amounts of

human effort. The analysis of GGR-18 utilized 10,044 hand-picked annotations, formed a database

of 1,972 unique individuals, and estimated that the population of Grévy’s zebra in Kenya was

2,812±171 animals (CI 95%). The processing was done with relatively experimental algorithms

at the time and took approximately three months to complete. It involved dozens of volunteers in

drawing and labeling annotation bounding boxes, required 18,556 human decisions of annotation

pairs suggested by an ID algorithm, and was estimated internally to cost at least $50,000 USD in

time and contracted labor. Using the latest detection methods described in this dissertation, together

with a new ID ranking algorithm, all of the original 56,588 images were re-processed. Without

any human effort, 11,916 annotations were found that showed identifiable, comparable, right-side

Grévy’s zebra, with the detection processing taking approximately half a day to complete. After

approximately 12 more hours of completely automated ID ranking and automated pair review, a

total of 1,297 human decisions were requested before the population estimate converged (it took

one reviewer approximately 8 hours to complete). The new process estimated 2,820±167 Grévy’s

zebra in Kenya in 2018, created a database of 2,022 unique animals (off by +2.5% IDs compared

to the GGR-18 database), and took approximately two working days to generate a result with one

human reviewer. If we assume that the reported GGR-18 census results were correct, then the new

re-processed population estimate was accurate within 0.3% and had a 93% reduction in human

effort.

The remaining chapters of this dissertation are organized as follows. Chapter 2 provides a

literature review of related work for deep learning in computer vision, supervised detection and

classification methodologies, and existing population estimation techniques. Chapter 3 describes
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the detection pipeline, its machine learning components and introduces two new datasets for

animal detection. Chapter 4 describes the process of photographic censusing, discusses what kinds

of problems must be solved when automation is a primary goal during a census, and offers a

mathematical framework for estimating a population size when machine learning methods are

involved. Chapter 4 also introduces a new evaluation dataset for Grévy’s zebra ID that focuses

on providing both ideal and compromised (i.e., hard) annotations. Chapter 5 introduces Census

Annotations and Census Annotation Regions as a solution to the problem of incidental matching and

other challenging scenarios that make human and automated processing more difficult. Chapter 6

applies the concept of photographic censusing in the real world through photographic censusing

rallies. The Great Grévy’s Rally in 2016 (GGR-16) and the Great Grévy’s Rally in 2018 (GGR-18)

were two large-scale photographic censusing events that generated population estimates for Grévy’s

zebra and reticulated giraffe (Giraffa camelopardalis reticulata) in Kenya, which are made available

as two new ID datasets. Finally, Chapter 7 provides a summary of the presented research, offers a

discussion on its role within computer science, and suggests avenues for future work in automated

wildlife conservation.



CHAPTER 2

RELATED WORK

This chapter will review the published literature relating to the methods and algorithms presented in

this dissertation. This work has three main intersections with previous research: 1) machine learning,

deep learning, and neural networks, 2) computer vision applications, datasets, and techniques for

image classification, object detection, and segmentation, and 3) animal re-identification for large-

scale population monitoring. The work done by the computer vision field is vast, and animal

applications represent a small (but growing) segment. In addition, there has been an increased

number of papers and interest in cross-applying advanced computer vision algorithms on animals.

This interest has grown enough to support new workshops at premier computer vision conferences

like ICPR, AAAI, WACV, and CVPR under the general topics of “Computer Vision for Social

Good” or simply “Computer Vision for Animals”. The research presented in the following chapters

fits well into these themes, and, hopefully, the state-of-the-art in automated wildlife monitoring will

continue to be pursued and advanced.

2.1 Deep Learning & Image Classification

The domain of computer vision was thrust to the forefront of publicly known computer

science applications with the rise of machine learning and, specifically, deep learning and neural

networks [14]–[17]. Neural networks excelled at solving classic computer vision problems like

image classification [18]–[22], bounding box localization [20], [23]–[25], and object detection [26]–

[29] due to their ability to learn complex representations from supervised training data. The work

presented here relies heavily on the advancements in neural network design and improvements in

training procedures.

One of the tremendous technological advances of the deep learning era in computer vision has

been the ability to learn how to represent an image with a feature extractor [30], [31]. Furthermore,

the ability to train a neural work end-to-end that can learn an objective (e.g., object classification)

Portions of this chapter previously appeared as: J. Parham and C. Stewart, “Detecting plains and Grevy’s zebras in
the real world,” in IEEE Winter Conf. Applicat. Comput. Vis. Workshops, Lake Placid, NY, USA, Mar. 2016, pp. 1–9.

Portions of this chapter previously appeared as: J. Parham, J. Crall, C. Stewart, T. Berger-Wolf, and D. I. Rubenstein,
“Animal population censusing at scale with citizen science and photographic identification,” in AAAI Spring Symp., Palo
Alto, CA, USA, Jan. 2017, pp. 37–44.

Portions of this chapter previously appeared as: J. Parham et al., “An animal detection pipeline for identification,”
in IEEE Winter Conf. Applicat. Comput. Vis., Lake Tahoe, CA, USA, Mar. 2018, pp. 1–9.
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directly from pixels has been a transformative force within the domain. Therefore, it is essential to

review a brief history of neural networks and their impact on the computer vision discipline. The

following discussion sets the context for the deep learning methods used throughout this dissertation.

In addition, it gives a chronological overview of when current machine learning techniques were

introduced and why they are still used in modern applications.

2.1.1 AlexNet & Overfeat

AlexNet [18] was the original network that first broke the mold in 2012 of using hand-

engineered features for computer vision tasks. The name “AlexNet” is a callback to “LeNet” by

LeCun et al. [32], [33], which was designed to perform handwritten digit classification [34] for

the U.S. Postal Service in the early 2000’s. The approach used by AlexNet achieved the lowest

error for the classification and localization tasks in the widely popular ILSVRC [35] challenge in

2012. Until that point, the majority of computer vision applications [36]–[38] relied on SIFT [39],

Deformable Parts Models [40], and HOG [37] for these tasks. The technique of Krizhevsky et

al. diverged strongly from the traditional thinking of hand-engineered feature extraction. Instead,

AlexNet learned how to create high-dimensional representations from images that optimized a

global loss function. The AlexNet network also first employed the use of dropout by Hinton et

al. [41] in a competition setting to regularize the final model better and prevent over-fitting. Dropout

is used to train some of the neural networks in this research.

The basic instruction set is relatively small to compute a neural network layer’s forward

activations and backpropagation loss derivative. Deep learning algorithms often use hardware

acceleration on Graphics Processing Units (GPUs) or Tensor Processing Units (TPUs) [42] to

drastically speed up the computation needed for training and inference. Since the computation is

relatively simple, it can be naturally parallelized across thousands of smaller, less complex compute

cores instead of a handful of general-purpose compute cores like what are found in a modern CPU.

For example, the use of NVIDIA GPU hardware with CUDA [43] drastically reduces the training

time of large neural networks by roughly 1.5 orders of magnitude compared to CPUs [43]. The

AlexNet network was so novel and massive for its time that existing accelerator hardware sold

on the open market was unable to handle its size. The authors engineered around that problem

by training the network on two separate GPUs to avoid hitting a hard memory constraint. The

work presented in this dissertation uses NVIDIA GPU hardware and CUDA to accelerate all of the

training and forward inference.
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Unfortunately, the original AlexNet network definition and training procedure were unpub-

lished when they won the ILSVRC challenge. The authors of Overfeat by Sermanet et al. [20]

claim a very similar place in computer vision history by replicating this work and being the first to

document and publish an implementation of convolutional classification with a multi-layer network.

The work of [44] with their ZFNet was mainly based on the AlexNet structure, but with new

hyper-parameter tuning techniques, which led them to win the ILSVRC 2013 challenge.

2.1.2 VGG

The runner-up winners of the 2014 ILSVRC were the creators of the VGG network [21],

marking a significant improvement in neural network feature extraction over AlexNet and Overfeat.

The advantage of the VGG network compared to previous networks was that it was exceedingly

deep for its time, at 19 layers compared to the five convolutional layers of its predecessors. In

addition, the VGG architecture used smaller 3x3 convolutional layers and 2x2 max-pooling layers

throughout the network, simplifying the network’s objective significantly and speeding up training

time.

2.1.3 Transfer Learning

A significant advantage of the VGG network was that it began the first meaningful exploration

of transfer learning [45]–[47] since the authors had difficulty getting the deeper network to converge.

The VGG authors first optimized a smaller convolutional network through “pre-training” and

transferred the weights to the final network. With its convolutional filters better initialized, the

network was then trained in a process called “fine-tuning” to create the final model. The benefits

of fine-tuning should not be overlooked: the transferred filters are likely trained for a particular

distribution and may apply inefficiently to a new dataset. Updating the convolutional weights of a

transferred model with fine-tuning often improves overall performance. Transfer learning has also

driven a massive exploration in neural network applications by allowing for convolutional filters

trained on a larger dataset to be applied on smaller applications where not enough data exists to

train the networks from scratch. We will see the technique of transfer learning applied in the animal

detection pipeline and Census Annotation approaches.
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2.1.4 GoogLeNet & Inception

The first-place winners of the ILSVRC 2014 challenge was a Google team with their complex

GoogLeNet architecture [25], [48]. The network had a 6.67% top-5 error rate, a noticeable

improvement compared to the previous year’s first-place winning performance of 14.8%. The

key insight of the GoogLeNet architecture was the use of “inception modules”, which included

a collection of multiple 3x3 and 1x1 convolutional filters within a single layer. The use of 1x1

convolutions is a variant of the research by Lin et al. with its “Network in Network” convolutions

that also had a filter size of 1x1 [49]. The added inception modules effectively allowed the network

to be deeper than the VGG network at 22 layers but with significantly fewer convolutional filter

weights (roughly 4 million) than the original AlexNet approach (approximately 60 million). It was

clear that deeper models generated superior results, but the research and competition communities

still had difficulty training deep networks.

2.1.5 Optimization Algorithms

To improve training stability, the GoogLeNet model was trained by replacing the Stochastic

Gradient Decent (SGD) optimizer with a different algorithm called RMSProp [50], which was later

combined with AdaGrad [51] and published as the ADAM optimizer [52]. Neural network training

had relied until then on various versions of Gradient Decent to optimize the initial conditions of

the network weights. In general, a neural network model is initialized with a set of randomized

weights (ignoring pre-trained weights) for a given initialization scheme [53]–[55]. An input image

(or other data source) is given to the network for its feed-forward inference pass, and it outputs a

vector of a pre-defined size. A loss function [56] is then used to compute the current error based on

the difference from a provided ground-truth label and the network’s output. The error loss for the

output layer is then used to compute the loss with respect to the penultimate layer’s outputs and

repeated recursively for all layers in a process called “back-propagation” [57]–[59]. The respective

loss for each layer in the network is then used to update the current weights to reduce the overall

error, representing one update step.

A more randomized variant of Gradient Descent, aptly called Stochastic Gradient Decent

(SGD), was a successful attempt by [60], [61] to speed up training through approximation. Gradient

Descent in its purest form has the gradient calculated for the entire dataset and uses a single weight

update per epoch. The key insight of SGD is that the network does not need to see the entire dataset

to be able to compute a loss gradient that approximates the ideal gradient for the current weights.
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Seeing a random sub-sample of the entire dataset is sufficient to calculate the loss for a given state

of the weights, significantly speeding up the iterative learning process by adding many more update

steps. SGD by itself does have a few optimization downsides: it is susceptible to saddle-points [62]

and can oscillate wildly in ravines [63], especially when the wrong learning rate schedule is used.

To partially combat these effects, a momentum term can be added to the gradient [64], [65] that

adds a moving average (typically γ = 0.9) of past gradients to the current loss derivative. SGD

alone without momentum [66] is also theorized not to be able to reliably find good global minima

because it can easily get trapped in less optimal local minima. Another consideration with SGD is

how large to make the sample size to ensure it is a representative statistical sampling. Mini-batch

SGD [67] uses small batches of examples (typically around 128) and averages their loss gradients

into a single weight update. There has been extensive evaluation of mini-batch SGD [50], [68]–[70]

within deep learning literature, including distributing the iterative training process to parallelize the

gradient computation across multiple machines [57], [71], [72].

2.1.6 Regularization

Turning our attention back to the original discussion on image classification and GooLeNet,

the authors used the ADAM optimizer because it works well with complex network architectures

and is remarkably fast compared to mini-batch SGD with momentum. All of the neural networks

presented in this dissertation are optimized using mini-batch SGD with momentum even though it is

slower compared to ADAM (see [68]). Other regularization improvements used on GooLeNet such

as batch normalization [73] and more aggressive data augmentation [74], [75] schemes allowed the

Google team to train such a deep model successfully. The work in this dissertation also applies both

concepts for all of the neural network training.

2.1.6.1 Batch Normalization

Batch normalization [73], [76] (also known as “batch norm”) plays a critical role in the

performance of deep neural network training as it normalizes the output of each layer to have a

zero mean and standard deviation unit vector magnitude. In addition, batch norm helps to control

run-away activations, oscillations, and exploding gradients [77], lowering training time. When

batch normalization is applied to a layer, it learns two additional parameters: γ and β. The γ term

is used to scale the activations of a layer, and β is added as an additional, layer-specific bias term.

These values are learned from the statistics of each mini-batch. Furthermore, they are expected to
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approximate the mean and variance for the entire dataset for a given layer’s activations.

2.1.6.2 Weight Decay

The two most common regularizers in neural network training are L1 (Laplacian) and L2

(Gaussian) weight decay. L1 regularization pushes certain weights to be exactly zero and is

analogous to having weight decay with a Laplacian prior on the W weight matrices:
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L2 regularization pushes the weights towards zero and is analogous to weight decay with a Gaussian

prior on the weight matrices:
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L2 weight decay is used extensively by the research community and used when training the neural

networks presented in this dissertation. It is a very effective regularization technique when used

with the ReLU [53], [78], [79] non-linear activation function and batch normalization.

2.1.6.3 Data Augmentation

Data augmentation [74], [75] is the process of applying a set of deterministic or randomized

operations on an input image before it is to be used as an example when training a neural network.

This process can be seen as a method of balancing the signal-noise ratio to help control over-fitting.

Standard augmentation operations for image data include: adding exposure and hue changes,
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random Gaussian pixel noise, translation, rotation, skewing, horizontal and vertical flipping, color

space transformations, and other sources of randomized pixel noise.

2.1.7 Skip-connection Networks

Neural network architectures before GoogLeNet were relatively linear and did not use multiple

branches of activations for a given layer. GoogLeNet introduced the very complex (for its time)

Inception Module and showed that complex flows of convolutional activations and their error

gradients could be calculated and learned. Using this as insight, neural network researchers asked

what would happen if a layer was not branched or copied into multiple streams but instead if some

layers were skipped.

2.1.7.1 Residual Networks (ResNets)

The last ILSVRC image classification challenge, held in 2015, was won by He et al. and

their network ResNet (Residual Neural Network) [26]. The authors drastically increased the depth

and circuit length of the neural network by using “skip connections” and liberal use of batch

normalization throughout the network. As a result, the network achieved a top-5 error rate of 3.57%

and was surpassing human-level performance. The introduction of residual skip connections was a

breakthrough in the development of neural network model architectures. The chief design challenge

at the time was that deeper networks were shown to increase performance, but increasing the depth

of the network caused training problems like vanishing gradients and co-adaptation [80]–[82]. The

benefit of residual connections is that the network can selectively turn off a convolutional filter by

learning the additive identity [83]. The authors showed that the identity is not only easy to learn

(especially with L2 regularization), but it also results in more stable and faster training because the

skipped convolutional activations become trivial to calculate.

2.1.7.2 Dense Residual Networks (DenseNet)

An extension of residual networks is the work by Huang et al. [84] and their DenseNet

architecture. The DenseNet model takes the idea of combining activations for a given layer and a

skip connection and extends it by combining the activations from multiple previous layers through

skip connections. They further show an increase in performance compared to ResNet (at the cost

of speed) and argue that the performance increase comes from increased feature reuse and deep

supervision learning [81] within the network. The whole-image classifier, annotation labeler, and
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Census Annotation models (described in Chapters 3 and 5) use a pre-trained 201-layer DenseNet

model as their feature extraction backbone.

The image classification task has essentially been considered solved by researchers, and new work

in deep learning since 2015 has focused more on making networks smaller [85]–[87] significantly

faster [28], [88], [89], wider [90], or have moved on to more complex tasks like object detection,

segmentation, and 3D applications. The foundation mentioned above of robust feature extraction

and research in training improvements has led directly to using neural networks for detection tasks.

2.2 Object Detection & Semantic Segmentation

The computer vision community after 2015 pivoted its focus to more complex tasks like

object detection and semantic segmentation since improvements on the classification task were

diminishing. The task of object detection is defined by the merging of two separate computer vision

tasks: bounding box localization and image classification. Object detection is also getting close to

being a solved problem, with real-time commodity implementations available on phones [91] and

even readily accessible tools for the wildlife conservation community [92]. However, novelty is still

being demonstrated for specific use-cases and real-world applications like large-scale animal re-

identification. This section provides an overview of relevant methods to the work in this dissertation

on animal detection for ID; a comprehensive review of object detection, evaluation primitives, and

datasets can be found in [93] and [94].

2.2.1 Detection Before Deep Learning

Before neural networks and deep learning became a ubiquitous solution for object detection,

many algorithms employed hand-engineered feature descriptors and classifiers to find objects. This

section gives a brief overview of the most common approaches.

2.2.1.1 SVM Classifier on HOG and Sliding Windows

Histogram of Oriented Gradients (HOG) [37] was the pre-deep learning grandparent of feature

extraction and object detection [40], [95], [96]. The method applies a fixed-size sliding window

across an image and extracts a HOG feature vector for that window. A Support Vector Machine

(SVM) [97] is then used to train a classifier and perform binary classification. The windows are

applied on a pyramid of multiple resolutions to support multiple scales of object detections [98].
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While these detectors could be trained quickly and with minimal data, they also suffered from poor

general performance.

2.2.1.2 Deformable Parts Models (DPM)

Deformable Parts Models (DPM) by Felzenszwalb et al. [40] is a more sophisticated version

of HOG and sliding windows and was widely popular. The DPM algorithm utilizes a 5-point star

model (with a unique model per class) that learns a HOG feature classification for the entire image

(the root) and latent variables for the locations of five different parts located around the root. The

star pattern is designed to “deform” to find parts in slightly different locations and poses in relation

to the root for a given object example. After neural networks had become ubiquitous, an attempt was

made to merge their feature extraction abilities with DPM. The work of Wan et al. [99] and [100]

provides an end-to-end trained model for using convolutional neural network features extraction

with DPM and non-maximum suppression (NMS) [101]–[103] for object detection. The work of

Girshick et al. [104] shows that DPM is a restricted version of convolutional neural networks and

provides the argument that CNNs are a more capable and expressive formulation of DPM. While

implicitly learned parts are not a component of the detection pipeline proposed in this thesis, it does

support explicit, manually-defined parts that can be detected as separate annotations and then linked

to a body annotation.

2.2.1.3 Hough Random Forests

The use of Hough Forests (i.e., Hough-transform [105] Random Forests) for object detection

was demonstrated by Gall et al. in [106]. Unlike DPM, the algorithm is somewhat resilient to

partial and occluded objects due to its voting scheme [107], [108]. The authors showed that

random forests have advantageous training properties and extend naturally to patch-based image

textures. They argue that the leaf nodes of a random forest tree can be considered a “discriminative

codebook” [109], which are used to generate classification probabilities. Furthermore, by training

to optimize for both classification and regression within the same random forest tree, they can learn

a spatial relationship of where a classified image patch is likely located in relation to an object’s

center. The approach is extended by Barinova et al. [110] to address occluding objects while others

have applied random forests to face, pose, and action recognition [111]–[113]; a comprehensive

analysis of Hough Forests is presented in [114]. A customized version of the implementation by

Gall et al. is evaluated in Chapter 3 as a baseline algorithm against more modern neural network
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detection approaches.

2.2.2 Datasets for Animal Detection

Parallel to the rise of advanced machine learning methods was the creation of large computer

vision datasets with supervised labels. However, the few approaches that have used neural networks

for animal detection have focused on analyzing camera trap photos [115]–[117] and other applica-

tions for counting animals [118]–[121]. Exploring animal detection for animal identification often

limits the related work to only animal re-identification methodologies, which often lack a detection

component or data suitable for training a detector (i.e., pre-cropped images).

The concept of a detection pipeline, while not novel when considering its components

separately, has not been comprehensively analyzed or reproduced in other works for animal ID.

The detection pipeline is primarily designed to be used with ground-based photographs but can be

re-tooled to work with overhead aerial images for the detection of animals [122]–[126].

2.2.2.1 Visual Challenges: PASCAL VOC, ILSVRC & COCO

While the most prominent public datasets do not focus entirely on animals, they often contain

bounding boxes for a handful of different animal species or high-level categories. For example, the

PASCAL VOC Object Challenge (VOC) [127] was one of the earliest datasets that had thousands

of images and bounding boxes for 20 categories, including six animal classes (bird, cat, cow, dog,

horse, sheep). The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset [35]

was foundational for research in deep neural networks as it offered 1.2 Million images for 1,000

object categories, with a non-trivial portion representing animals. The scale and variety allowed

the first generation of neural network models to train well and not severely overfit, giving time and

diversity for general-purpose convolutional kernels to be learned. Unfortunately, the animal classes

in ILSVRC are very general. For example, the synset n02391049 for “zebra” includes multiple

zebra species taken in the wild by professional photographers, zebras seen in zoos, stuffed zebra

animal toys, fondant zebras on cakes, and other abstracted forms like “zebra crosswalks”. Thus, the

utility of this dataset for animal detection with real-world images is limited.

The Microsoft Common Objects in Context (COCO) dataset [128] is a large dataset with

330,000 images for 80 categories, 10 of which are animals. Interestingly, the COCO dataset has

instance segmentations for categories like “zebra” and “giraffe”, which can train segmentation

networks. The detection pipeline is designed to be bootstrapped and evaluated without the need for
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segmentation ground-truth, however, because fully annotated segmentation data is very laborious to

annotate. Therefore, all of the methods herein are focused on bounding boxes.

2.2.2.2 Camera Traps & Citizen Science

Other than large challenge datasets exists, there are community-based projects like Zooni-

verse’s Snapshot Serengeti [129], [130] that use citizen science [131]–[133] to annotate camera trap

data for 40 African species. The iNaturalist [134] project also uses citizen science to gather and

label image data for various animal species. These projects offer lots of data but do not support

bounding boxes for animals and therefore also do not offer ground-truth animal ID data. One of

the primary benefits of using citizen scientists is that a large number of volunteers can be used to

survey a large area [135]–[137]. The Labeled Information Library of Alexandria: Biology and

Conservation (LILA BC)4 project run by Microsoft’s AI for Earth initiative is a public repository

of animal datasets for conservation. The vast majority of the datasets listed in this repository are

based on camera trap imagery and are often limited in their use for detection and animal ID. New

applications that use camera-trap datasets [130], [138]–[141] for training show that algorithms can

successfully classify camera-trap imagery with computer vision and be a foundation for count-based

population estimates.

2.2.2.3 Bootstrapping, Active-learning & Instance-based Learning

A good part of the work in this dissertation is concerned with curating animal ID datasets.

However, the protocols surrounding the collection of hand-labeled ground-truth bounding boxes

share similarities with bootstrapping detection algorithms [75], [142]–[144] that perform weakly-

supervised learning [145], [146]. One highlighted example is the Annotation Interface for Data-

driven Ecology (AIDE) project [147] that allows for the machine learning models to be quickly

trained as annotated data is being generated, similar to instance-based learning algorithms [148].

The proposed method uses whole-image species classifications to train a whole image classifier

and limited human interaction to refine proposed bounding box candidates. This technique can be

viewed as a relaxation of one-shot [44], [149], [150] and few-shot [151] learning. Most strikingly,

the bounding box refinement problem has been addressed by [152] that shows meaningful speedups

in human interactions compared to bounding box regression by hand.

4LILA BC - http://lila.science (Accessed: Oct. 29, 2021).
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2.2.3 Two-Stage Detection with Region Proposals

The earliest deep learning approaches in object detection were created to quickly capitalize

on the wild success of their respective winning image classification methods [18], [20], [153], [154].

For example, the early winners of the ILSVRC image classification challenge also saw winning

detection solutions by densely applying their neural networks with a sliding window across the

image. These methods were relatively crude as they did not fundamentally address detection as

a separate task but simply as a brute-force reformulation of the image classification task. These

types of two-stage detectors became popular, however, as classification accuracy rapidly improved.

A two-stage detector uses an algorithm to solve the localization problem first and feeds candidate

bounding boxes to a second algorithm for classification (or suppression). We will explore both

salient-based bounding box localization algorithms and deep neural networks that can be used to

propose regions around objects for use in a two-stage detection process.

2.2.3.1 Deep Saliency & Attention

In computer vision, the concept of saliency (or “visual saliency”) [155]–[157] is the idea

that particular objects or items in an image draw a significant amount of attention from the eye.

For example, attention is generally pulled to subjects in motion, the most prominent object in the

frame, or an object that “pops out” with an abnormal appearance [158]. The critical insight is

that salient object detection is class agnostic, and an algorithm can be trained to predict a set of

classless bounding boxes around things of interest. The salient bounding boxes are then given to a

second image classification network to construct the final object detections (two-stage detection).

Various pre-deep learning methods have been used for salient object detection, including the use of

minimum spanning trees [159], edges [160], BInarized Normalized Gradients (BING) by Cheng et

al. [161] for speedy region proposals, and bottom-up segmentation algorithms like Selective Search

by Uijlings et al. [162].

Object saliency with deep learning, also known as deep saliency [163]–[168], has shown to

be a powerful tool for suggesting candidate bounding boxes for detection. The work by Kümmerer

et al. [169], [170] began the first steps of exploring deep saliency with their Deep Gaze network,

which borrowed the architecture and transferred weights of AlexNet [18] to create a saliency

map of the input image. The parallel work by Liu et al. [171] on deep hierarchical saliency

network (DHSNet) was also among the first to train an end-to-end neural network to produce

saliency maps. AttentionNet by Yoo et al. [172] worked in a slightly different manner in that
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it aggregated many different sources of salient and weak detection outputs to construct its final

detection predictions. Work has also been done to combine local and global contextual information

for more accurate saliency maps [173]–[176], take advantage of an attention mechanism more

directly [172], [177]–[181], support multiple resolutions [182]–[184], and be able to run in real-time

applications [185]–[187]. The Annotation of Interest (AoI) classifier, presented as a component of

the detection pipeline in Chapter 3, has an architecture that is structurally similar to Overfeat [20]

but is trained on an objective that is more closely related to deep saliency and attention networks.

2.2.3.2 R-CNN & Region Proposal Networks (RPN)

Region Proposal Networks (RPNs) [188], [189] are specialized neural networks that separate

the classification task from object detection and focus on only the localization of bounding boxes.

RPNs share a similar design goal with object saliency; both are trying to propose class-agnostic

bounding box locations for objects, but with the distinction that RPNs often share weights with

a neural network image classifier. Similar to salient object detectors, the proposed regions are

classified using an image classification neural network to form the final detections.

One of the first neural networks to use region proposals was Region-based Convolutions

Neural Network (R-CNN) [190]. The Selective Search [162] algorithm was used initially as input to

R-CNN as a preceding region proposal algorithm, but it was prohibitively slow and could obviously

not share weights. As a result, the architecture of R-CNN was updated to add a dedicated RPN

neural component for object localization [24] alongside an updated classification component [26].

The downside of this network was that the two-branch structure (RPN and classifier) meant that it

needed to be trained with an alternating procedure, optimizing either the RPN or the classifier at a

given time. This design led to training instability but was still a meaningful improvement in speed

and accuracy over using an external region proposal algorithm. A third iteration of the R-CNN

detector (called Faster R-CNN [29]) uses a combined training procedure and is the winner of several

tasks in ILSVRC 2015. The work in this dissertation analyzes Faster R-CNN’s two-stage detection

performance using an off-the-shelf implementation.

The design of having a separate component within the network to produce bounding box

proposals has been explored by other works. For example, the DeepProposal model by Ghodrati et

al. [191] and Feature Pyramid Networks (FPN) by Lin et al. [192] uses the intermediate activations

between layers of an image classification network to find potential object candidates at various scales

and perform Non-Maximum Suppression (NMS) to produce a final set of boxes for classification.
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The refinement of the R-CNN approach also continues by taking better advantage of the image

classifier by training the network to work as a cascade of classifiers [193], [194], where earlier

layers discard easy negatives and focus on parts while deeper layers can specialize on large objects.

2.2.4 Single-Stage Detection

Single-stage detectors (also known as single-shot detectors) [23] take a step back and examine

what the best neural network structure should be for a detector without being dependent on precon-

ceived designs inherited from image classification networks. In contrast with two-stage detectors,

single-state detectors predict a single, combined result of bounding boxes and classifications without

needing two inference steps or intermediate region proposals.

2.2.4.1 You Only Look Once (YOLO)

One of the first neural network solutions that was able to train a unified region proposal

component with object classification is called, humorously, You Only Look Once (YOLO) by

Redmon et al. [28]. The YOLO network is designed to predict an NxN grid of cells (typically 7x7)

where each cell assigns itself an object classification label and produces M bound box predictions.

Each bounding box has a 4-tuple regression prediction for the box’s location and a salient “object-

ness” confidence score (similar to [195]). The final predicted bounding boxes are generated by

multiplying the classification label scores for each cell by the object confidence scores for each

of its bounding boxes. The ability to train YOLO as a unified pipeline makes it advantageous for

real-world applications due to its efficiency and lack of additional training infrastructure (no need

for alternating between branches during training like R-CNN). Due to YOLO’s relatively simple

network architecture without an RPN, its authors reported real-time performance using GPUs.

However, YOLO’s integration of bounding box predictions into a unified network comes with

downsides: a complex loss function, additional hyper-parameters, an unpredictable error gradient at

the start of training (which often diverges), and a lack of multi-resolution detections. To address

training instability, YOLO uses transfer learning and a process called “burn-in” that starts with a

relatively small learning rate to warm up the network before the actual training. YOLOv2 [196]

was introduced to address common failures made by the original network; YOLOv2 adds Batch

Normalization to increase training stability and lessen the need for burn-in, adds training and

inference at multiple scales, and starts using anchor boxes [197]. An anchor box is defined as one

of k centroids when the ground-truth bounding boxes are clustered. The use of anchor boxes allows
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the model to focus on regions and sizes of boxes that are likely to be seen instead of attaching

them to an arbitrary underlying grid cell. Finally, YOLOv3 [198]) was introduced to modernize the

approach of YOLOv2 with a better feature extraction backbone using ResNets and adds support

for three separate scales of predictions to localize smaller objects better (similar to [199]). For this

research on the detection pipeline, the YOLOv2 model is analyzed against Faster R-CNN for animal

detection.

2.2.4.2 Single-Shot Detectors

Shortly after YOLO was published, the Single Shot Multibox Detector (SSD) by [167] was

introduced as an alternative single-shot detector. The main difference between SSD and YOLO

is that it uses a fully convolutional neural network (FCNN) [27] while still being able to achieve

real-time detection performance. The accuracy was also a bit higher than YOLO (version 1), and it

rivaled two-stage detection approaches like Faster R-CNN in terms of accuracy while also being

substantially faster at inference. The design of SSD, like others [200]–[203], takes advantage of

a unified convolutional structure and introduces bounding box prediction at intermediate layers

for multi-scale detections. Other approaches use Receptive Field Blocks [204] to enhance feature

selection for object detection, and the Trident Network [199] approach learns a three-branch, single-

shot neural network that generates small, medium, and large bounding box predictions. More recent

single-shot detectors attempt to remove the need for anchor boxes entirely and instead use keypoint

triplets [205] or hourglass designs [206]–[208].

2.2.5 Semantic & Instance Segmentation

Novel bounding box proposal and single-shot networks became less frequent around 2018 and

2019 as incremental improvements to object detection performance diminished. The fundamental

problem is that bounding boxes are rigid and limiting shapes – detection failures became more

nuanced [198] because boxes are sometimes hard to draw and locate consistently. It was clear that

to advance the state-of-the-art for object detection, a reformulation of the objective was needed: the

community needed better, more precise bounding boxes. It is not so much that existing bounding

boxes in large datasets were not labeled correctly, but rather that bounding boxes were too coarse of

a concept, and access to more intimate details was needed.

Semantic segmentation is the task of labeling the exact pixels that belong to a given class

category. Semantic segmentation has historically been used as a means for object detection [209]–
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[213], locating parts [214], and have been implemented using a range of techniques, including

Fisher vectors [215], fully connected CRFs [216], and graphs [217]. For example, given a picture of

Times Square in New York City, we could ask a person to paint all cars with red paint, buildings

with blue paint, sky or water with yellow paint, road and sidewalks with purple paint, people with

green paint, and everything else with orange paint. The goal would be to paint every pixel in the

image with an assigned color. If we want to segment out each unique car in the image, however,

painting all of the cars with a single red color offers insufficient detail to perform the task. Instance

segmentation is an enhancement of semantic segmentation where each instance of a given class is

also annotated. In our New York example, an instance segmentation would ask a computer to color

all cars with different shades of red so that the boundary for all cars is defined down to the pixel.

The required level of detail for segmentation is much more involved and precise than drawing

a bounding box for each object, making it much slower to gather. The success of segmentation

techniques has been parallel to the creation of large datasets like Microsoft’s Common Objects in

Context (COCO) dataset [128] that have spent the time to add instance-level segmentations for

a large number of images and classes. Likewise, other methods have shown that it is possible to

simulate color images and ground-truth segmentation data for training [218]–[220]. While this

dissertation does not use semantic or instance segmentation techniques, it is related to the coarse

background segmentation component in the detection pipeline. The results reported here suggest

that instance segmentation will allow for even more automated photographic censusing methods in

the future. However, the resources and funding of conservation groups are often minimal, and it is

difficult to realistically expect fully segmented ground-truth to be annotated at large scales for novel

species. To maximize the real-world usefulness of the methods presented here, the focus on using

annotated bounding boxes (with select metadata) is key to keeping them adaptable for new species

and a feasible option for wildlife conservation groups.

2.2.5.1 Fully Convolutional Neural Network (FCNN)

A Fully Convolutional Neural Network (FCNN), introduced by Long et al. in [27], is a

special type of neural network that has no fully connected dense layers. The benefit of having no

dense layers is that the network is not rigidly set to a fixed input or output size. This feature can

be exploited by applying the network in a fully convolutional fashion across a larger input image

implicitly, and the network does not need to resort to any type of fixed-sized sliding window or

shift-and-stitch techniques [20], [153]. The FCNN has similarities to the All Convolutional Network
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by Springenberg et al. [22] in that the network architecture is comprised entirely of convolutions

with no fully connected dense or pooling layers. The design of the FCNN makes it a flexible

platform for image classification, region-based object detection [221], and a natural candidate for

segmentation [222]. The detection pipeline has a coarse background classifier that is implemented

as an FCNN and uses semi-supervised learning [223] on bounding boxes. There is not currently a

component in the detection pipeline that relies on having full object segmentations for training data

because rectangle bounding boxes are sufficient for all training.

2.2.5.2 U-Net & Mask R-CNN

The work of Ronneberger et al. [224] proposed the novel U-Net architecture with its convo-

lution, embedding, and up-scaling layers. U-Net uses a single-shot process to generate semantic

segmentations directly from input images. The network shares outputs from the convolutional

feature maps to their corresponding up-scaling segmentation maps for the same resolution. The

use of up-scaling branches led to further development of de-convolutions [225]–[227] and their use

in semantic segmentation. Furthermore, the work by Yu et al. [228] on dilated residual networks

allowed the network to learn how to effectively up-scale images. As for two-stage segmentation

methods, Mask R-CNN [229] extended the author’s previous work on R-CNN to produce a semantic

segmentation as outputs of the RPN. The Detectron [230] approach uses existing bounding boxes

or rough semantic segmentations to create instance segmentations. The approaches of U-Net and

Mask R-CNN are very popular (with over 28,000 and 12,000 citations, respectfully) and have been

used on animal detection [231]–[233] and aerial counting [118], [234], [235].

2.3 Animal Re-Identification & Population Estimates

Human re-identification (re-ID, also referred to as “biometrics”) [236]–[239] has long been

the interest of computer vision applications and has natural cross-applications with animal re-

identification. While the image classification and object detection techniques we have discussed

can find animals and determine their species, it is difficult to apply these concepts directly to

identifying unique individuals. New algorithms are therefore needed to solve animal identification

as a dedicated task. For example, a detection process is still needed to filter relevant images and

sightings of animals. The job of an identification procedure is to build a searchable database of

repeat sightings of the same animal and calculate a population estimate.

Historically, population estimates have been done entirely by hand, using counting-based
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methods [129], [130], [139], [240], physical tags or collars [241]–[245], or manual description

codes [246]–[248]. These estimates are typically custom, one-off efforts and do not have uniform

collection protocols or data analysis. Because datasets are often curated by hand, they tend to be

focused on a small number of individuals [249] or focus on animals with few repeat sightings [250].

One of the most challenging barriers with performing population estimates with deep learning

is that there is a structural mismatch in target species between large datasets for animal re-ID

(that show pre-cropped images for at least hundreds of individuals with repeat sightings of each

animal over time) [251]–[253] and public datasets for animal detection (with at least thousands

of annotations and original images that are seen in different locations, but without ID) [130],

[254]–[256]. Attempting to build deep learning algorithms for a single species can be severely

limited by not having access to large-scale datasets for both the detection and identification tasks.

As presented in this dissertation, the concept of photographic censusing is a bootstrapable and

end-to-end framework for generating ground-truth animal detection datasets with curated animal

IDs.

While this dissertation does not contribute new animal identification methodologies, it does

use them in its photographic censusing process. A brief overview of animal identification is given

below, but the reader is encouraged to explore a more comprehensive history provided by Ravoor et

al. [257], Hoeim et al. [258], and Weinstein [259].

2.3.1 Animal ID Ranking & Verification

Animal re-identification (also known as “animal re-ID”) [260] can be broken up into two tasks:

ranking and verification. Identification ranking [261]–[264] is the process of querying the image of

an animal against an existing search database of previous encounters to find visual-based matches.

The most confident matches are returned in rank order, with the highest-scoring database example

in position one (i.e., rank-1). Identification verification [265]–[270] is quite different as there is no

need for searching: verification asks if two presented animals are the same or not, regardless of why

the pair is being compared or how it was found. For example, if you were given a grainy photo of a

person’s face and a pile of 100 driver licenses, you could rank the licenses according to the people

you felt were the closest to matching the reference image. Maybe you would first partition them

by gender, then sort by age, then organize by skin color, etc. and then narrow the candidates to the

handful you felt were the most likely. Likewise, you could also be given the same grainy face photo

and one license and asked to make a yes or no decision on if those two photos represent the same
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person. We can realistically expect an ID verification algorithm to be much faster than ID ranking;

ranking images with a verifier through brute-force is possible but can quickly become infeasible

as the database grows. In other words, both tools are useful for human and animal ID as they can

optimize for two very different goals. If both of these tasks work relatively well for a given animal

species, it is possible to build automated systems that can generate a population estimate, as this

research will demonstrate.

The challenge for identification ranking is that not all species show the same kinds of visual

information for matching, even though texture-based matching is successful across a variety of

species [271]–[279]. For example, a zebra has high-contrast stripe textures visible across the body

that do not change over the life of the animal, a perfect example of a species that can be matched

with visual ID [261], [280]–[283]. On the other hand, a green sea turtle has lots of texture on its shell,

but those patterns change slowly over time (like rings of a tree). The overall color and appearance

of a sea turtle shell can also change based on the animal’s diet. The face and flippers of a sea

turtle, however, are covered with small patches (called “scutes”) that are reliable for pattern-based

ID [284], [285]. It is important to recognize that not all parts (like a shell) of an animal are reliably

useful for ID over time. Some species may require more specialized attention by a detector to find

specific parts of the animal.

Like a bottle-nose dolphin or an African elephant, some animals do not have stripes, spots, or

intricate patterns for pattern-based identification. The lack of texture, however, does not necessarily

make these species unidentifiable. Rather, it asks if different paradigms of ID algorithms can

make ID work for those species. Animal ID algorithms can be designed to focus on identifiable

features like the outline of a dorsal fin [286], the jagged nicks and notches of a whale fluke [287]–

[290], or a fanned-out ear of an elephant [291], [292]. Animals that do not have intricate patterns

or detailed contours (i.e., local features) may still offer large structures or definition-less blob

patterns (i.e., global features) that can be used for ID. For example, the bonnet callosity pattern

of right whales [250], [293]–[296], or the Rorschach-like underbellies of giant manta rays [263],

or the unique constellations of whale shark spots [297]–[299] can be used for recognizing and

distinguishing individual animals.

It also seems evident that some species, like the American red squirrel (Tamiasciurus hudson-

icus or Grant’s gazelle (Nanger granti) in Africa, are simply beyond the practical ability of visual

ID to recognize individuals. We should recognize that the abilities of any visual ID algorithm are

fundamentally tied to a human’s ability to confidently decide if two sightings show the same animal
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or not. If a human was presented with two images of squirrels, it seems improbable that a reliable

“same” or “different” decision could be made without the aid of scarring or a deformity. This begs

the question, “how could a ranking algorithm’s results, even from a perfect oracle, be trusted if a

human was unable to tell if the rank-1 match was correct or not?” While we can consider ID ranking

to be a super-human task – something that is expected to surpass human-level performance – a

human’s ability to verify pairs should be a bellwether for ID feasibility. If humans cannot accurately

verify pairs of annotations for a species, then that species is categorically incompatible with visual

ID methods and is a better candidate for a more invasive or abundance-based ID alternative. The

methods described here consider unidentifiable animal species outside of the problem scope for

visual population monitoring and photographic censusing.

Other than body texture and edge contours, other approaches have treated animal ID in a

similar way to human face ID [300]. Animal faces have been shown to be trackable in video

frames [301], [302] and moderate success has been shown when applying modified face ID algo-

rithms to chimpanzees [303]–[305]. The biggest issue with chimp face ID is that the populations are

fairly small, and the broader impact on other species is not very well understood. Apes are not the

only candidate for face ID; lemurs [306] have also worked with face ID methods and the whisker

patterns of brown bears [307], polar bears with HAAR-features [308], [309], and lions [310] have

shown success for identification.

The various methods for animal ID are not a direct focus of this dissertation, but some baseline

algorithms are needed to demonstrate the impact and success of the contributed methods. Some

algorithms, like triplet-loss networks [311]–[313], require significant amounts of training data and

need to be bootstrapped by algorithms that do not rely on deep learning. The following algorithms

were co-developed with the detection pipeline and photographic censusing methodology presented

in this work and are selected as representatives for detailed analysis:

1. HotSpotter [261] - a texture-based ranking algorithm that uses local features on areas with

sharp changes in contrast. This algorithm uses SIFT features [39] at its foundation and does

not need to be trained with a deep-learning algorithm, meaning it can be run on new species

out-of-the-box with minimal tuning.

2. CurvRank [314] - a curvature-based ranking algorithm that matches local segments of an edge

contour. This algorithm requires training data to predict outline contours but does not rely

on comprehensive ID data for training. While this algorithm cannot be run on new species
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completely natively, it can cross-apply its pre-trained models on similar features (i.e., dorsal

fins look very similar, regardless of species).

3. Verification Algorithm for Match Probabilities (VAMP) [13] - a random forest verification

algorithm that uses hand-engineered features for comparing two sightings. This algorithm

does require training data for ID comparisons but can be trained from a small (and converged)

database of animals due to its data mining procedure.

4. Pose-Invariant Embeddings (PIE) [263] - a triplet-loss algorithm that creates a global em-

bedding feature for distance-based ranking and verification. This algorithm is often the

most accurate for a given species but requires extensive training data to train. New species

cannot be ranked (or verified) by PIE until an algorithm like HotSpotter or CurvRank builds a

preliminary dataset of IDs first that can be used to train the feature extraction and embedding.

The proposed components and methods in this dissertation are designed to be modular and general-

purpose and may be used with other ranking or verification algorithms. An overview of these four

algorithms (and their related work) is offered below.

2.3.1.1 HotSpotter & VAMP

The work by Crall [13] performs texture-based animal ID ranking by comparing SIFT

descriptors [39] that are extracted at keypoint locations [315] for an annotation. Foreground-

background segmentations from the detection pipeline (see Section 3.5) are used to weight these

extracted keypoints, and the resulting descriptors are gathered into an approximate nearest-neighbor

(ANN) search data structure [316]. A new annotation can then be queried against the ANN index to

find descriptors similar to others in the database. Matches in the sparser regions of descriptor space

(i.e., those that are most distinctive) are assigned higher scores using a “Local Naive Bayes Nearest

Neighbor” method [317]. The scores from the query that match the same individual are accumulated

to produce a single score for each animal. A post-processing step then spatially verifies the matches

and re-ranks the returned list of individuals [318] (as will be defined and discussed in Chapter 5).

In addition to the HotSpotter ranking algorithms, the Verification Algorithm for Match

Probabilities (VAMP) verification algorithm was also developed by Crall [13]. VAMP is trained as

a random forest classifier [319], [320] on a hand-engineered feature vector and produces a decision

of “same animal”, “different animals”, or “cannot tell” for a pair of annotations. The model is swift

and is relatively accurate for well-formed annotations.
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2.3.1.2 CurvRank

The CurvRank algorithm by Weideman [262], [291], [314] uses a U-Net [224] architecture to

extract a coarse contour and a self-supervised [321] CNN to refine that edge into a fine contour. The

contour is then converted into a series of descriptors with a novel, digital curvature-based feature

extractor. The descriptors are placed into a nearest neighbors search structure and matches can

be queried. A similar algorithm called FinFindR [287], [322] also works on extracted contours

and uses A* [323] to produce a trailing-edge segment for dorsal fins. The algorithm then uses a

pre-trained classifier to recognize a unique fixed set of individuals, requiring substantial training

data and a need to retrain periodically.

2.3.1.3 Pose-Invariant Embeddings (PIE) & Triplet-Loss Networks

One of the most recent techniques to perform animal ID ranking is a triplet-loss network [311]–

[313]. A triplet-loss network aims to learn how to represent an animal’s identity directly and extract a

feature embedding that can be compared with other embeddings (without the need for normalization).

This design has seen success in animal classification by normalizing the pose of birds [324] and

was cross-applied to instance recognition (i.e., re-identification) for animals [249], [325], [326]. In

contrast to HotSpotter or CurvRank, the intermediate features and descriptors cannot be visualized,

but the distance between two features does not need to be normalized before clustering. The ability

of triplet-loss networks to learn a global feature embedding makes it generally more accurate and

faster than methods that use hand-engineered features. However, it comes at the cost of needing

large amounts of training data.

Triplet-loss networks are an enhancement of Siamese networks [327]–[329] and are trained

by mining a triplet pair consisting of a reference image, a positive example, and a negative image.

During training, the network is tasked with learning how to do feature extraction for embeddings;

ideally, the distance between the reference and the positive embeddings should be small, while the

distance for the reference and negative pair should be large. The Pose-Invariant Embeddings (PIE)

algorithm [263] has an additional component that allows multiple poses for the same animal (left

and right) to be learned within the same model. This dissertation uses HotSpotter and PIE to rank

annotations of Grévy’s zebra and build a curated database. The VAMP algorithm is also compared

against PIE as a verifier in an analysis of how much work can be automated during a population

census.
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2.3.2 Animal Population Estimates

The field of animal population estimation is much older than the era of deep learning,

stretching back to 1896 and the work of Johannes Petersen and his mark-recapture ecological

studies [330] on European plaice (Pleuronectes platessa). Since that time, various statistical

techniques have been used for sampling animal populations and estimating error. The detection

pipeline and other methods are designed to be used as black-box components within a larger

censusing framework. Various frameworks [2], [139], [331] in the conservation literature have

included computer vision components as well.

2.3.2.1 Capture-Mark-Recapture

Mark-recapture is used to estimate the size of an animal population [10], [11], [332]–[334].

Typically, a portion of the population is captured at one point in time, and the individuals are marked

as a group. Later, a second population capture is performed, and the number of previously marked

individuals is counted and recorded. Since the number of marked individuals in the second sample

should be proportional to the number of marked individuals in the entire population (assuming

consistent sampling processes and controlled collection biases), the size of the entire population

can be estimated. [281] The population size is estimated as the ratio of marked individuals during

the first and second captures against the number of resighted individuals. Thus, the formula for the

simple Lincoln-Petersen estimator [335] is:

Nest =
K ∗ n

k
(2.5)

where Nest is the population size estimate, n is the number of individuals in the first capture, K is the

number of individuals from the second capture, and k is the number of recaptured individuals that

were marked from the first capture. There also exist more sophisticated extensions to the formula

that account for various known sources of error [12], [332], [336].

Applying the Lincoln-Petersen estimator requires that several assumptions be met. The

estimator expects that no meaningful births, deaths, immigrations, or emigrations have taken place.

Further, the sightability of individuals must be equal between photographs. Sampling back-to-back

days reduces the likelihood of violating the first two assumptions for most large mammal species.

For photographic censusing, we can assign multiple teams of volunteers to traverse the same survey
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area to attempt to increase the overall number of sightings. More sightings on the first day mean

better population coverage and increased resightings on the second day give a more confident

population size estimate. By intensively sampling a survey area with many photographers (that

may haphazardly overlap), the expectation for equal sightability is high and identical for any given

individual in the population. Therefore, all of the required assumptions for the Lincoln-Petersen

estimator can be satisfied for a photographic census. A two-day collection is structured into a public

“rally” that focuses specifically on upholding these sampling assumptions and coordinating the help

of volunteers.

This work explores a passive variant of mark-recapture that is based entirely on photographs

called sight-resight [337], [338]. The entire photographic censusing technique can be viewed as an

automated and large-scale implementation of a sight-resight study. By tracking individuals, related

to [339], [340], the proposed method can make more confident claims about the population. The

more individuals that are sighted and resighted, the more confident the population estimate and

robust the ecological analyses will be.

2.3.2.2 Graph ID & Local Clusters and Their Alternatives (LCA)

We now must consider how to associate and curate annotations into their respective IDs

accurately. The immediate question is, “how do we use animal ID ranking and verification

algorithms as tools to build a database of animal IDs?” One naïve solution is to begin with an

empty database and build it incrementally by adding one annotation at a time. Each time a new

annotation is added, it is expected to be matched against the current database. The ranked ID results

for the new query annotation can be passed to a verification algorithm to 1) automatically decide

which database annotations (by pairing them up with the original query annotation) show the same

animal or 2) filter and reorder the ranked results for human review. At any point, a human reviewer

could also be presented with the same pair of query and database annotations as the verification

algorithm to get a ground-truth decision. This design allows for human-in-the-loop [341]–[344]

verification of the database as it grows, and human reviewers can be used to help correct for any

errors made by the underlying machine learning algorithms [345]–[347]. If a confident match is

found, it is added to an existing ID in the database. Otherwise, if no match is found, then a new ID

is added to the database. This process is termed one-vs-many agglomerate matching and is one of

the easiest to implement for large animal databases [281].

This process, however, does not have any built-in way to identify and correct ground-truth
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errors in the database. Database errors can be introduced and may accumulate over time if the

ranking algorithm fails to retrieve a correct match from the database where one exists (false negative).

An error may also be introduced when a verifier automatically decides that annotations for two

different animals are the same individual (false positive). A human reviewer can also make mistakes

and, for example, could decide that two annotations of the same individual are different animals

(erroneously increasing the total population size by 1). As the database grows, ID mistakes can

become non-trivial in size and sometimes require substantial amounts of effort to fix. One example

of such a database mistake is a “snowball”. This type of error can be expected for herding species

where annotations overlap and is created when two actual individuals are incorrectly matched

together under the same ID label. The error, in turn, makes it more likely for a third individual to

be matched as the same name in the database, and so on until many individuals are represented by

one name label (decreasing the population size). Fixing this type of error is laborious because it

requires the one big name to be split into an unknown number of smaller names for each distinct

individual. When we constrain ID matching to only an agglomerate process – always making new

animal IDs or adding to existing animal IDs – it becomes exceedingly difficult to know if (or indeed

how many) errors there are in the underlying database over time.

The end goal of photographic censusing is to create a consistent database of individuals and

their respective sightings. This database can be used to estimate the number of animals in the overall

population, which can be sensitive to systematic ground-truth errors in the ground-truth ID database.

Leaving these errors unaccounted for and unresolved may end up skewing the direction or urgency

of conservation action, so it must be addressed. What is needed is an overarching management

algorithm that can continually curate an existing database and use many-vs-many reinforcement

matching to run consistency checks on its current IDs. This database consistency problem is

important enough for accurate population monitoring that it demands a dedicated solution, and

two algorithms are analyzed by this dissertation: Graph ID [13] and LCA. These algorithms are

responsible for ensuring that the current state of the database is trustworthy by enforcing a level of

self-consistency. As database errors are found and fixed, the management algorithm should also

decide which pairwise verification decisions to send to a human and control how much automation

there is during the curation of the database. This type of review is similar to active-learning [348]–

[351] since the updated ground-truth IDs can be used to iteratively re-train the underlying machine

learning algorithms [352] and improve the overall estimate. The process of continual curation also

shares similarities with database visualization for consistency checking [353] and ground-truth data



36

debugging [354], [355].

The first algorithm, Graph ID [13], allows for the state of a population of animals to be

constructed as a graph of annotations (nodes) and pairwise decisions (edges). The nodes of the

graph are all expected to be annotations that can be visually matched using a ranking algorithm.

Decisions with three possible states represent the edges between two nodes: “same animal”,

“different animals”, or “cannot tell”. The goal of the Graph ID algorithm is to construct a consistent

graph of positively connected components (PCCs) where there are only negative edges between

all PCCs. The algorithm relies on a positive-redundancy measure within all PCCs and negative-

redundancy between all matching PCCs to ensure that the database is in a consistent state. This need

for explicit redundancy and the possibility of an incomparable (“cannot tell”) decision means that

the algorithm stops all automated processing when an inconsistency is found, expecting a human

reviewer to find and fix the issue. If the verification algorithm is not confident enough to decide

a given pair, it is also given to a human for review. Likewise, if a PCC is inconsistent, all of its

previously reviewed annotation pairs are given to humans for review until the error is found and

resolved. Likewise, since the algorithm requires all (matched) PCCs to satisfy negative redundancy,

there is a quadratic increase in the number of negative edges that need to be reviewed by humans.

While redundancy is conceptually easy to understand, the Graph ID algorithm places an outsized

focus on enforcing it and does not take full advantage of the automated verification algorithm.

The Local Clusters and their Alternatives (LCA)5 algorithm is developed as an alternative

to the Graph ID algorithm and makes better use of the automated verifier. The (experimental and

yet-to-be-published) algorithm accomplishes this goal by shifting away from the concept of positive

and negative connectivity. Instead, it attempts to measure a cluster’s relative stability in comparison

to alternative clusterings. In addition, LCA chooses to delay human decision-making for as long as

possible. Further, it does not require consistency at all times (and forcing human decisions when

a mistake is found). It instead relies as much as possible on automated decision-making to infer

what the most likely resolution is. LCA will run a series of trials by splitting the cluster apart and

measuring the coherence of a handful of alternatives, and only ask for a human decision when

all of the various alternatives are too unstable. In practice, this drastically reduces the amount of

human effort to curate a population graph and is a much more efficient algorithm for automated

population censusing. While LCA is not a contribution of this dissertation, the work discusses how

LCA behaves differently than the Graph ID algorithm and analyzes its failure modes. A large-scale

5https://github.com/WildMeOrg/wbia-plugin-lca (Accessed: Oct. 29, 2021).
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experimental analysis of the LCA algorithm to verify ID datasets is a contribution of this work, as it

presents an initial benchmark for the algorithm’s performance compared to Graph ID.

2.3.2.3 The Great Zebra & Giraffe Count (GZGC) of 2015

The formalized concept of a photographic censusing rally is a significant contribution of this

work. A censusing rally is designed as a two-day event that focuses on collecting many images for

a target species and attempts to survey its known geographic area. Citizen scientists [131]–[133] are

used as volunteer photographers to increase the overall coverage of the surveyed area, distribute

the workload, and overall make data collection more feasible. The image data collected by all

participants are then analyzed by machine learning to produce a database of resident animals and

estimate the size of the population.

One of the first real-world demonstrations of photographic censusing was The Great Zebra

& Giraffe Count (GZGC) of 2015 and is the focus of the author’s master’s thesis [2]. The GZGC

censusing rally was a small case study performed within the Nairobi National Park in Nairobi,

Kenya to estimate the local population size of plains zebra (Equus quagga) and Masai giraffe

(Giraffa tippelskirchi). The primary goal of the GZGC was to prove the effectiveness of the general

censusing procedure with quickly-trained volunteers and to test the workflow of using automated

detection and ID algorithms for real-time feedback to participants. The insights and lessons learned

from that event were applied during the Great Grévy’s Rally (GGR) [356], [357] to estimate the total

number of Grévy’s zebra in Kenya. The details and analysis of the GGR photographic censusing

rallies in 2016 (GGR-16) and 2018 (GGR-18) are the focus of Chapter 6. To provide a quick

summary: the two Great Grévy’s Rally events combined collected over 90,000 images and used

over 350 participants, compared to around 9,000 images and 50 contributors during the GZGC.

2.4 Summary

The techniques proposed in this dissertation span the disciplines of computer science, com-

puter vision, and ecology and are heavily motivated by the application of real-world population

monitoring. The related machine learning work in image classification, object detection, and

other semantic computer vision algorithms allows the automated processing of large volumes of

images for photographic censusing. Separating the work responsibility into two stages – a detection

pipeline followed by a separate identification process – is helpful since it allows for modularized

development and dedicated attention when creating machine learning datasets.



CHAPTER 3

ANIMAL DETECTION PIPELINE

This chapter presents a pipeline of modular machine learning components that detect, classify,

and otherwise prepare images of animals for use in a visual identification (ID) procedure. The

computer vision task of object detection includes the inherent step of finding animals in images but,

when used as a prerequisite for animal ID, it needs to be able to do much more than just that. For

example, animal detection needs to determine an animal’s species and viewpoint so that automated

tools consider only annotations that can actually be compared; having ecological metadata like

species and viewpoint increases the accuracy and speed of ID by filtering out annotations that could

only function as potential confusers. An annotation may also need to be rotated to allow accurate

matching or have its background segmented out because it is distracting for algorithms or humans.

What is needed is a comprehensive pipeline that can perform a variety of different “animal detection”

tasks so that an automated ID process can focus on its tasks of describing, retrieving, ranking, and

verifying potential matches of animals.

The animal detection problem can be exceedingly complex: there may be multiple (or no)

animals from several different species in an image, some species might not be the target of ID but

have a similar visual appearance to the species of interest, some annotations may have poor quality

while others may show only parts of the animal, or an animal may be occluded by other animals

or vegetation. Furthermore, animals may be seen from various scales, viewpoints, and poses, only

some showing identifiable information. The images provided to the detection pipeline may also

originate from handheld cameras used by trained ecologists or novices (e.g., tourists, children) with

no prior experience taking photos of animals for photographic ID. Images can also be captured by

passive collection devices like a camera-trap or an aerial surveying platform. The detection pipeline

must account for these challenges and automate the creation of high-quality annotations useful for

animal ID or wide-area aerial counts.

The detection problem as applied to photographs of zebras, for example, has several real-

world challenges: varying viewpoints, natural and artificial occlusions, overlapping animals (i.e.,

instinctual herding behavior), non-rigid body structures (legs, necks), and significant changes in

Portions of this chapter previously appeared as: J. Parham and C. Stewart, “Detecting plains and Grevy’s zebras in
the real world,” in IEEE Winter Conf. Applicat. Comput. Vis. Workshops, Lake Placid, NY, USA, Mar. 2016, pp. 1–9.

Portions of this chapter previously appeared as: J. Parham et al., “An animal detection pipeline for identification,”
in IEEE Winter Conf. Applicat. Comput. Vis., Lake Tahoe, CA, USA, Mar. 2018, pp. 1–9.
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Figure 3.1: The challenges of the detection problem (shown for plains zebras) include varying
viewpoints, natural and artificial (image frame) occlusions, and overlapping
animals. The image shows 7 individual zebras with 5 differing viewpoints and 5
occlusions of differing severity. The highlighted animals are almost completely
occluded, but still clearly discernible. ©2016 IEEE. Reprinted, with permission,
from: J. Parham and C. Stewart, “Detecting plains and Grevy’s zebras in the real
world,” in IEEE Winter Conf. Applicat. Comput. Vis. Workshops, Lake Placid, NY,
USA, Mar. 2016, pp. 1–9.

visual appearance (e.g., genetic variations, dust, scarring). Looking at Figure 3.1, the head of the

highlighted zebra (red arrow) is visible, but the rest of the animal is almost completely occluded

except for one or two legs. The cut-off animal on the far right (blue arrow) only has a small section

of neck visible, whereas its neighbor to the left is facing entirely away from the camera. While the

challenges listed above are not unique to zebras, they are typical for species that assemble in herds

and social groups. Zebras seen in the real world can be frustratingly uncooperative with respect

to the task of trying to detect and identify them, which makes them an ideal challenge species for

evaluation. Furthermore, these kinds of challenging detection scenarios elevate the problem to a

degree of difficulty not often seen in standard computer vision benchmarking competitions like

PASCAL VOC [127] and ILSVRC [35].

In response to the challenges outlined above, a five-component detection pipeline is proposed

and analyzed in this chapter (see Figure 3.2 on the next page). These components are, in order of
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Figure 3.2: An overview of the detection pipeline and its components: 1) image classification
provides a score for the species that exist in the image, 2) annotation localization
places bounding boxes over the animals, 3) annotation classification adds species
and viewpoint labels to each annotation, 4) annotation background segmentation
computes a species-specific foreground-background mask, and 5) Annotation of
Interest (AoI) classification predicts primary animal(s) of the image. ©2018 IEEE.
Reprinted, with permission, from: J. Parham et al., “An animal detection pipeline
for identification,” in IEEE Winter Conf. Applicat. Comput. Vis., Lake Tahoe, CA,
USA, Mar. 2018, pp. 1–9.
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their intended usage in the detection pipeline, the following: 1) whole-image classification to select

the images that contain desired species or are otherwise relevant to the analysis, 2) bounding-box

localization to form annotations, 3) annotation labeler to predict the animal’s species and viewpoint,

4) coarse annotation segmentation to eliminate irrelevant background information, and 5) a classifier

to select the “Annotation(s) of Interest” as the most prominent animal(s) in the image. We will

also discuss additional components and use cases that add functionality and make the detection

pipeline a more comprehensive solution, including detecting parts within an annotation or orienting

annotations with a predicted rotation. We will start the discussion by reviewing two new datasets

for animal detection that this research contributes.

3.1 Animal Detection Datasets: WILD & DETECT

This chapter presents two new detection datasets, called WILD (Wildlife Images and Local-

izations Dataset) and DETECT, alongside the proposed detection pipeline. The purpose of these

datasets is to provide a more realistic collection of in situ animal sightings that often are not found

in public detection datasets. The hope is that these datasets can motivate future ecological research

on animal detection and provide examples of how best to curate datasets for the problem domain of

animal re-ID.

3.1.1 WILD Dataset

The WILD dataset is comprised of photographs taken by biologists, wildlife rangers, citizen

scientists [132], and conservationists, and captures detection scenarios that are uncommon in

publicly-available computer vision datasets like PASCAL [127], ILSVRC [35], and COCO [128].

Furthermore, human photographers implicitly curated all animal sightings in the WILD dataset

(i.e., a person actively decided to take the picture). This feature is in contrast to what would be

seen in 1) movement-based camera trap, 2) exemplar-based datasets like iNaturalist6, or 3) “always-

on” overhead aerial surveys of animals. Unfortunately, most computer vision datasets make no

distinction between wild animal sightings and other representations of that species (e.g., a stuffed

zebra animal toy or animals seen only in captivity). Public challenge datasets are not representative

of the types of images generally collected by park rangers and tourists, which is how image data for

animal population censusing is gathered (discussed in Chapter 6). Class definitions that allow broad

acceptance distract from the task of detecting real-world sightings of animals in the wild and are

6inaturalist.org (Accessed: Oct. 29, 2021).
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generally incompatible with ID. In contrast, all of the images in the WILD dataset were taken of

wild animals in their natural habitats.

The species cataloged by WILD are 1) Masai giraffe (Giraffa camelopardalis tippelskirchi), 2)

reticulated giraffe (Giraffa reticulata), 3) sea turtle (Chelonia mydas and Eretmochelys imbricata),

4) humpback whale fluke (above-water flukes of Megaptera novaeangliae), 5) Grévy’s zebra (Equus

grevyi), and 6) plains zebra (Equus quagga). The WILD dataset offers challenging detection

scenarios for each species; for example, zebras and giraffes tend to form social groups and stand

close together, creating sightings with frequent bounding box overlap, occlusion, and cross-species

co-location. It would be hard, or at the very least inefficient, to capture this level of complexity

in artificial settings like a zoo – especially since a zoo setting largely omits the chance of seeing

other species in the same image and will duplicate background textures. The common practice for

sea turtles is to photograph the animal in and out of the water (if possible). As a result, there are

two major modalities in the dataset for sea turtles: underwater backgrounds and more standardized

backgrounds on land. The dataset also has examples of Humpback whale flukes to provide a

contrasting species that is easy to detect but much harder to identify (contour-based ID). Finally,

WILD has animal detections for two species of giraffe and two species of zebra, which must be

distinguished. From an ecological and censusing perspective, it would be inappropriate to lump

Grévy’s zebra and plains zebra into a single “zebra” label because these two populations are distinct

and may have radically different scopes of conservation concern. Experience with large computer

vision datasets gives the general impression that classification labels are often much too broad to use

as ground-truth for training an animal detection system for real-world applications on endangered

species.

A dataset of 5,784 images was gathered, and 12,007 annotation bounding boxes were hand-

annotated for 30 classes. The six species of interest that are the focus of the dataset have 9,871

annotations in total. A breakdown of the number of images and annotations that contain each

species can be viewed in Table 3.1. The annotations were cropped out of the original images and

were assigned to human reviewers to label the animal’s species and viewpoint. Reviewers were

then tasked to pick the most prominent annotation(s) in each image for Annotation of Interest (AoI)

classification, which is discussed at length in Section 3.6. A total of 3,602 annotations were marked

as AoIs (36.5%). The dataset was then partitioned into two sets: training (4,623 images) and testing

(1,161 images) through an 80/20% stratified split that ensured the number of annotations per image

was balanced across the split. This splitting results in a total of 7,841 annotations for training and
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Table 3.1: The WILD dataset has 1,000 images for six different species. The total number of
images is slightly less than 6,000 because some species share sightings within the
same image, specifically between zebras and giraffes, demonstrating the need for a
multi-prediction image classifier. There are also an additional 2,136 annotations in
this dataset of miscellaneous categories (car, boat, bird, etc.). ©2018 IEEE.
Reprinted, with permission, from: J. Parham et al., “An animal detection pipeline
for identification,” in IEEE Winter Conf. Applicat. Comput. Vis., Lake Tahoe, CA,
USA, Mar. 2018, pp. 1–9.

Species Images Annotations Annotations of Interest
Masai Giraffe 1,000 1,468 611
Reticulated Giraffe 1,000 1,301 595
Sea Turtle (Green and Hawksbill) 1,000 1,002 567
Whale Fluke 1,000 1,006 595
Grévy’s Zebra 1,000 2,173 669
Plains Zebra 1,000 2,921 561
TOTAL 5,784 9,871 3,598

2,030 for testing. The dataset is distributed7 in the PASCAL VOC format with additional metadata

attributes to mark viewpoints and AoI flags.

3.1.2 DETECT Dataset

A more specialized dataset than WILD is also contributed, called DETECT, which is com-

prised of sightings of only Grévy’s and plains zebras. The purpose of this dataset is to provide a

more comprehensive real-world understanding of how these two species (with very similar visual

appearance) are seen together and annotated for photographic censusing (discussed in Chapter 4).

The DETECT dataset was constructed from 2,500 images taken by ecologists, field technicians,

computer vision researchers, and volunteer citizen scientists [131], [133] working in Kenya. The

images were taken such that the primary focus had to be one of these two species of zebra; bounding

boxes and species labels were then annotated by hand, labeling plains zebra as zebra_plains

and Grévy’s zebra as zebra_grevys. In addition to zebras, bounding boxes were generated for

other animals present in the images (if any) and assigned with an unspecified species label.

The number of annotations per image was much higher for this dataset (zebras like to herd together

in social groups compared to a solitary sea turtle).

7https://cthulhu.dyn.wildme.io/public/datasets/wild.tar.gz [1.4GB] (Accessed: Oct.
29, 2021).
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Table 3.2: The number of viewpoints for each species in the DETECT dataset. An
unbalanced distribution of viewpoints is due to 1) the behavioral characteristic of
zebras and 2) the preference of field scientists in previous manual mark-recapture
studies to photograph a single side. ©2016 IEEE. Reprinted, with permission,
from: J. Parham and C. Stewart, “Detecting plains and Grevy’s zebras in the real
world,” in IEEE Winter Conf. Applicat. Comput. Vis. Workshops, Lake Placid, NY,
USA, Mar. 2016, pp. 1–9.

Viewpoint Plains Grévy’s Unspecified Total
left 1,965 565 120 2,650

front-left 226 116 29 371
front 83 69 32 184

front-right 104 137 17 258
right 424 1,029 147 1,600

back-right 168 326 36 530
back 190 244 36 470

back-left 381 186 25 592
Total 3,541 2,672 442 6,655

Finally, viewpoint information was annotated for each bounding box in DETECT by assign-

ing it to one of eight views of the animal’s body: left (L), front-left (FL), front (F),

front-right (FR), right (R), back-right (BR), back (B), and back-left (BL). The

entire dataset has 6,655 ground-truthed bounding boxes with 3,541 plains, 2,672 Grévy’s and 442

“unspecified”. The breakdown of viewpoints by species is shown in Table 3.2. A challenge to

photographing real-world zebras is that capturing a balanced number of viewpoints can be difficult,

with front being the least photographed in the dataset. The strong bias for the photos showing

plain zebras with left-side viewpoints, and Grévy’s zebras with right-side viewpoints, is due to

historical reasons in the way animals were identified by-hand for manual mark-recapture studies [2],

[358].

The dataset is available8 as a Wildbook IA (WBIA)9 database for training and evaluation. The

data was split into subsets with 60% for training, 20% for validation, and 20% for testing. For all

model training described in subsequent evaluations, the training and validation sets were combined,

and the trained models were evaluated against only the test set. The partitioning of the various sets,

while random, was balanced to respect both the distribution of species and the number of annotations

8https://cthulhu.dyn.wildme.io/public/datasets/detect.tar.gz [18.0GB] (Accessed:
Oct. 29, 2021).

9https://github.com/WildMeOrg/wildbook-ia (Accessed: Oct. 29, 2021).
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Figure 3.3: The distribution of densities (bounding boxes per image) in the DETECT dataset.
A density of 0 indicates that the image was taken containing no animals. The
maximum density of any image in the dataset is 23 but was capped at 7 (or more).
©2016 IEEE. Reprinted, with permission, from: J. Parham and C. Stewart,
“Detecting plains and Grevy’s zebras in the real world,” in IEEE Winter Conf.

Applicat. Comput. Vis. Workshops, Lake Placid, NY, USA, Mar. 2016, pp. 1–9.

per image (see Figure 3.3 for a distribution). The viewpoint was not considered for this balancing

procedure because many of the images contain multiple photographed animals photographed from

differing viewpoints. A total of 501 images (with 1,343 ground-truth annotations) comprise the test

set, which is for what the following results are reported.

The rest of this chapter will describe the core components of the detection pipeline in the

order that they would be applied to an input image. The neural network models (except for the

bounding box localizers) are trained using Lasagne [359] and Theano [360], [361] on a single

NVIDIA TITAN V GPU with 12GB of video memory10. The localizer models are trained using

1) the original Caffe [363] source code for Faster R-CNN11, 2) an original Python wrapper12 for

10Much of this work was originally developed in 2016 and 2018. Since then, most of the detection pipeline’s
components have been modernized and re-implemented with PyTorch [362] and are on PyPI under wildbook-ia

11https://github.com/rbgirshick/py-faster-rcnn (Accessed: Oct. 29, 2021).
12https://github.com/WildMeOrg/wbia-tpl-pydarknet (Accessed: Oct. 29, 2021).
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the original YOLO V1 source13 by Redmon et al., and 3) a PyTorch [362] re-implementation 14 by

Ophoff et al. [364] of the original open-source implementation of YOLO v2. The Python bindings15

for the Hough Forests implementation by Gall et al. [114] are used for this evaluation.

3.2 Whole-Image Classification (WIC)

The Whole-Image Classifier (WIC) is the first stage of the proposed detection pipeline. Its

primary goal is to make a “relevancy check” for all of the processing in the detection pipeline. Thus,

for example, there would be no need to power up an advanced animal detection neural network

and load its hefty weights into GPU memory for an image of a birthday party.16 A benefit of

using a first-pass image classifier is that – due to advances in neural networks (see Chapter 2) –

it can be trained with relatively little training data. We can therefore expect this component to

be very accurate and fast. We analyze two use cases where the WIC is helpful for an automated

animal detection pipeline: 1) checking for the existence of relevant species in an image for further

processing, and 2) quickly processing large amounts of images to eliminate trivial negatives (e.g.,

filtering out false triggers made by camera traps).

3.2.1 Species Existence Classifier

One of the most common purposes of the whole-image classifier (WIC) is to quickly predict

the existence of species of interest within an image. Unlike the original ILSVRC classification

challenge that offered only a dominant whole-image class with 1-class and 5-class testing modes,

there is often a need to classify images containing multiple animal sightings for more than one

species (of equal importance). This distinction is important because some animal species (e.g.,

Grévy’s zebra and reticulated giraffes) have overlapping migratory ranges and are sometimes seen

together in images. Therefore, the WIC is designed to predict a multi-prediction, multi-target vector.

The vector’s corresponding index is set to 1.0 if at least one animal of that species exists in the

image and 0.0 otherwise. Note that this network is not tasked to count the number of animals for a

given species in the image. Instead, it simply needs to produce a true or false flag for if the species

exists.

The network takes as input a 192×192-pixel image that is reduced to a 5×5×128 feature

13https://github.com/pjreddie/darknet (Accessed: Oct. 29, 2021).
14https://github.com/WildMeOrg/wbia-deprecate-tpl-lightnet (Accessed: Oct. 29, 2021).
15https://github.com/WildMeOrg/wbia-tpl-pyrf (Accessed: Oct. 29, 2021).
16This is an actual situation that was encountered when the contents of an SD card was copied during a census.
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vector via convolutional and max-pooling layers. The network then adds a 256-dimension dense

layer, followed by a feature pooling layer, a dropout [41] layer (p = 0.5), and another 256-dimension

dense layer. The final dense layer has six outputs, one for each species of interest, and uses a sigmoid

activation function. The design of the image classifier purposefully does not normalize the network’s

output with a softmax activation function, nor does it penalize for categorical cross-entropy loss. As

a result, the output is not a 1-hot vector and does not produce a discretized PDF that sums to 1.0.

For example, a valid network output could predict the existence of all (or none) of the target species

in a given image.

For all of the neural network classifiers in the detection pipeline, extensive data augmentation

is employed during training to help control over-fitting. Data augmentation aims to provide the

network with a slightly different training example for each epoch, sampled such that the mini-

batches are also ordered randomly. The augmentation is applied at runtime each time the training

example is loaded into memory and not simply applied beforehand and cached to disk, saving disk

space and increasing the amount of randomization during training. The augmentation performs the

following operations, each randomized for every training example:

1. exposure in the Lab color space on the luminance channel

2. slight hue shifts,

3. rotation, scaling, and Affine skewing,

4. horizontal flipping (generally no vertical flipping), and

5. blurring.

The WIC model does an excellent job at correctly predicting species existence within an

image, as shown in Figure 3.4. The worst-performing species (Masai giraffe) achieves a ROC

area-under-the-curve (AUC) of 96.3%, and the best-performing species (whale fluke) has an almost-

perfect 99.94% AUC, missing only a handful. The mean AUC across all species is an outstanding

98.3%. The operating points were selected as the closest values on the curve to the top-left corner

(indicated by the colored dots on each curve), providing the optimal AUC and balancing the true-

positive rate (TPR) against the false-positive rate (FPR). With optimal points selected independently

for each species, the image classifier can be used to predict an existence value for all six species

simultaneously. When we consider this use case, the classifier is correct 64.8% of the time at

predicting the exact X-hot vector for a given test image. Nevertheless, the vast majority of the

errors have a Hamming distance of 1, meaning the algorithm incorrectly predicts only one of the

values in the vector. Over 90% of errors are between the two species of giraffe and zebra, predicting
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Figure 3.4: The ROC performance curves for the Whole Image Classifier (WIC). We can see
that the WIC component of the detection pipeline performs extremely well on all
species. Some species are harder than others, notably giraffes and plains zebras;
this error can be attributed to the similar appearance of the giraffe species,
leading to confusion. All species have an impressive AUC greater than 96%,
making it an accurate first-pass filter for the detection pipeline. ©2018 IEEE.
Reprinted, with permission, from: J. Parham et al., “An animal detection pipeline
for identification,” in IEEE Winter Conf. Applicat. Comput. Vis., Lake Tahoe, CA,
USA, Mar. 2018, pp. 1–9.
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existence for both when only one is shown in the image. Since the rest of the detection pipeline can

distinguish between similar species, these errors are not a major concern because they should be

caught by later, more focused (working with annotations, not images) components of the pipeline.

Using the WIC as a content filter is technically optional; we could choose to rely on the

outputs of the second component, the localizer, to perform the initial content filtering. However,

preliminary results by Beery et al. [115] suggest that a localizer will slightly outperform a whole-

image classifier at the filtering task on camera trap data but at the cost of much higher inference

times. In addition, the WIC has significantly fewer parameters than the localization networks

presented in the next section, which makes it much faster to run on large volumes of images. For

comparison, the WIC (run on batches of 1024 images) can return results in approximately 3-4

seconds using GPU acceleration. In contrast, localization networks need to run smaller batches of

around 128 (for memory reasons) and take upwards of 30 seconds (real-time) on the same GPU and

images. Therefore, the benefits of using a WIC with localization compared to using just a localizer

can be profound when computational resources or runtime requirements for the application are

limited.

3.2.2 Filtering Camera Trap False-Alarm Triggers

Another application for the whole-image classifier is to use it as a fast binary classifier to filter

out irrelevant images. One example of where this function is valuable is very quickly processing

raw images taken by a camera trap or aerial survey. Images collected by a motion-triggered camera

trap are expected to have a high ratio of false positives because the trigger is not context-aware

(i.e., images taken that do not contain any sightings of desired species). To set the scale of this

problem: the WIC classifier could, for example, be used to search through 500,000 camera trap

images to find less than 1,000 that had sightings of aquatic jaguar (Panthera onca). The sheer size

of the problem is an issue for running slower localization algorithms on this amount of data and

generating sufficient training data to train the WIC (or localizer) on novel camera trap collections

with minuscule true-positive rates.

Fundamentally, we can re-formulate the WIC as a simple binary classifier (2 classes with

standard cross-entropy loss) that predicts either “keep” or “discard” for a given image. The benefit

of a binary design is that it can be very flexible, allowing a camera trap researcher to decide

the usefulness of an image in whatever way is needed. A web interface was designed to give a

randomized example to a reviewer for annotation, as shown in Figure 3.5. The benefit of this tool is
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Figure 3.5: The web interface for reviewing Whole Image Classifier ground-truth labels.
When using the WIC in binary mode, a simple flag on the entire image can be
assigned for “keep” (positive) or “discard” (negative). When run in the
multi-prediction, multi-target mode, the localization web interface and
subsequent annotations are used as the WIC’s ground-truth training labels.

Figure 3.6: Example camera trap images of true-positive (left, animals detected) and
false-positive (right, nothing of interest) triggers, taken from two camera-trap
datasets.
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Figure 3.7: The ROC performance curves for the Whole Image Classifier on camera trap
photographs. The best model with 5% of the data annotated achieves a
classification accuracy of 96.5%.

that it allows a researcher to quickly create ground-truth for training the WIC component that is

tuned for a unique camera trap location and survey time, often to create a one-time-use ML model.

One of the apparent benefits of using the WIC as a filter for camera trap images is that it does

not require extensive (and relatively labor-intensive) bounding-box training data. If available, the

network can use bounding boxes to specify existence ground-truth (essentially a “yes” or “no” value

for keeping an image), but this is not a requirement. As such, gathering a large amount of training

data for the WIC is manageable and efficient because it can be trivially distributed to multiple

human annotators.

The results of the WIC are presented here on a proprietary dataset captured by Dr. Megan

McSherry at Princeton University using motion-based camera traps in Kenya. While state-of-the-art
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results on this task are not reported here, a benchmark of the WIC classifier is presented for future

baseline comparisons. We refer the reader to the work of Beery et al. [115] for a more advanced

framework on how to detect animal movement in camera traps. The dataset was captured with

camera traps placed in specific areas to photograph domesticated grazing of herding animals by

local tribes. Figure 3.6 gives an example of a positive and negative image – we see that (left) shows

sightings of sheep and (right) is an empty field with nothing of interest (a false trigger). An initial

model was trained using a baseline ground-truth split between a few hundred positive and negative

images provided by the researchers (referred to as the 0% split). New WIC models were then trained

using hand-annotated ground-truth data, in approximate intervals of 1% of the total size of the

dataset, up to 5%. Figure 3.7 shows the performance of each WIC model as more ground-truth

examples were provided. Even with only 1% of the entire dataset annotated, the WIC model can

achieve an impressive Area Under the Curve (AUC) of 92.1%. Annotating a total of 5% of the

data results in a final classifier that achieves 98.7% AUC on held-out validation data. However, we

can see that the performance increase with more ground-truthed training data quickly diminishes;

effectively, the dataset could have only been annotated to 3.5% (98.5%) for approximately the same

performance level as 5% (98.7%). These results show that the WIC can be a highly effective and

accurate tool for filtering camera trap imagery while putting light expectations on data annotation.

The evaluation focuses on small amounts of training data. It shows that annotating even a 1%

random data sampling can perform as a weak classifier to eliminate many false-alarm images (92.1%

AUC).

After the WIC is applied to the raw images and filtered appropriately, the next step of the

detection pipeline is to localize all of the relevant animals in the images. This step is crucial because

images may contain multiple animals, or the animal could be small relative to the size of the image.

Therefore, some process is needed to convert images into annotations of distinct animals for the

identification procedure.

3.3 Annotation Bounding Box Localization

The second component of the detection pipeline is tasked with generating bounding boxes

and species labels for the relevant animals in an image. Localization is vital from an identification

perspective because it allows for the separation of distinct animals, gives a consistent and comparable

scale of the different sightings, and supplies a method (cropping) to remove large amounts of

distracting background information. Furthermore, the preciseness of the bounding boxes (i.e.,
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Figure 3.8: Example annotation localization predictions on single-sighting exemplar images
for each of the six species of interest in the WILD dataset. The green boxes
designate ground-truth bounding box coordinates, and the red boxes represent
the localization bounding box predictions. Since annotation classification is also
performed, these bounding boxes are treated more like salient object detections.
©2018 IEEE. Reprinted, with permission, from: J. Parham et al., “An animal
detection pipeline for identification,” in IEEE Winter Conf. Applicat. Comput. Vis.,
Lake Tahoe, CA, USA, Mar. 2018, pp. 1–9.

how well they fit snugly around an animal) can play a critical role in the overall accuracy of

the identification pipeline, something that will be examined in-depth in later chapters. After all,

annotations are the primary lens through which ID sees the world, and the localizer should be

very careful not to produce confusing or poorly-formed bounding boxes. This filtering role also

means that the quality of the localization component plays a crucial role in the overall quality of a

photographic census. Hence, it is a significant focus of evaluation in this chapter.

Two fundamentally different detection techniques for the localization component are com-

pared: a pre-neural network approach and (two) neural network approaches. As perplexing as it

may seem in the era of deep learning to use anything but a neural network, random forest detectors

are easy to train because they have fewer hyper-parameters, built-in regularization, and require

much less data to train. Furthermore, they do not rely on heavy GPU-accelerated computation for

training, making them an ideal candidate for bootstrapping when few training images are available.

The Hough Forests [106] variant of random forests, in particular, is resilient to partial and occluded

objects due to its voting scheme [107]. As such, a random forest-based detector and two CNN-based

detectors (Faster R-CNN [29] and YOLO v2 [196]) are evaluated on the WILD Dataset.

Before we begin, we need to review exactly how a bounding box is defined. A bounding box

i for a given image I is parameterized by the following equation:

bboxi(Image, x, y, w, h, θ) = rotate(I[y : y + h][x : x + w][:], θ) (3.1)
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where cropping is applied before rotating around the center of the bounding box. While the

localization algorithms presented in this section do not apply any rotation directly (and only predict

axis-aligned bounding boxes with species labels), a separate orientation component can rotate and

fix the boxes if needed. The orientation task is a separate module because it allows the localizer to

be replaced without requiring the new algorithm to support rotation (a relatively rare need). It is also

worth noting quickly that not all animals in an image are worth localizing. For example, small birds

or very distant animal herds are ignored in this evaluation because they are categorically not the

focus of censusing events, especially since it can be exceedingly tedious to annotate ground-truth

thoroughly. Thus, while ground-truth completeness in bounding boxes is crucial, there is a point

where it is simply not realistic to perfectly annotate (or automatically find) every single animal in an

image. Examples of easy object localizations for each of the six species in the WILD dataset can be

viewed in Figure 3.8.

3.3.1 Hough Random Forests (RF)

Hough Forests are an ensemble of random binary trees. Each tree attempts to optimize the

performance of classification and regression by performing a series of binary pixel tests; the authors

of [106], [365] demonstrate that training a random forest tree in this combined fashion benefits both

generalization and accuracy. The first pre-processing step of training extracts a collection of small

image patches (32×32 pixels) from the ground-truth to compose a large set (60,000) of positive and

negative training patches. Importantly, each positive patch records its relative offset to the center of

its corresponding object in the ground-truth.

During training, each tree is given the same set of patches. The implementation used in this

evaluation has an ensemble – hence, a “forest” – of 10 trees. Each tree generates tests that split the

patch dataset at each non-leaf node, which performs a random binary pixel test on each image patch

P . The test, as formulated in [114], is

testα,p,q,r,s,τ (P ) =















0, if P α(p, q) < P α(r, s) + τ

1, otherwise
(3.2)

where α is the channel of the image patch, (p, q) is a random location in the patch, (r, s) is a

different random location in the patch, and τ is a threshold offset. Every node is allowed to pick a
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(a) Source Image (b) Hough Image (c) Final Detections

Figure 3.9: Hough Forests test patches are extracted densely over a test image (a) and are
classified using an ensemble of random binary trees into a collection of leaves.
Each leaf has a set of positive and negative patches given to it during training,
which are used to make weighted probabilistic Hough votes into an aggregate
Hough image (b). The high-probability object center peaks (white) are used to
generate bounding box proposals (c, blue). The proposals are filtered with
non-maximum suppression to create the final detections (c, red). Compare the
votes of the red and purple test patches in (a, b); the purple votes are sporadic
and do not accumulate, whereas the red votes contribute to an object center. The
blurring on peaks is due to voting confusion. ©2016 IEEE. Reprinted, with
permission, from: J. Parham and C. Stewart, “Detecting plains and Grevy’s
zebras in the real world,” in IEEE Winter Conf. Applicat. Comput. Vis. Workshops,
Lake Placid, NY, USA, Mar. 2016, pp. 1–9.

unique randomized test, randomly seeded to promote diversity. Every node samples randomly over

the parameters α, p, q, r, s, τ to find the best binary test that minimizes either the positive-negative

classification error or the positive-patch regression error. The node will minimize (with p = 0.5)

either the binary cross-entropy classification error or the regression offset sum-squared difference

error (negative patches are ignored since, by definition, they have no center offset to an object

center). Each tree is constructed recursively to a depth of 16 layers during training or creates a leaf

when a node has fewer than 20 patches.

During test time, each leaf node holds a collection of positive and negative patches. A leaf’s

positive class probability is computed as the percentage of positive patches out of all patches it

received by the end of training. Each positive patch in a leaf makes a weighted probabilistic vote

for the object’s center in the test image based on where that patch originated in its respective

ground-truth image. As shown in Figure 3.9, these Hough-transform votes (a) are computed densely

across the entire test image and aggregated over multiple scales to generate a combined Hough

image (b). The bright white spots in the Hough image indicate the probable locations of object

centers. Thresholded peaks are selected as candidate center proposals, object bounding boxes are
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derived from the locations of patches that voted for the particular peaks (c, blue), and non-maximum

suppression is applied to produce the final detection regions (c, red).

The Hough Forests detector has some distinct advantages: 1) it is easy to parallelize across

multiple CPU cores for efficient training and inference processing, and 2) the voting scheme will

aggregate probabilities originating from any location on an animal. For example, if only the face

and neck of a zebra are visible in an image, the face and neck tree leaves will still make probabilistic

votes for where it thinks the center of a zebra should be, even if that location is off the edge of the

image or is occluded. This voting scheme makes Hough Forests more resilient to occlusions and

makes it an attractive solution to the challenges present in the WILD dataset. However, the image

patches are too small to learn precise localization information (i.e., a zebra neck patch can look very

similar to a zebra hip), which results in a distinct blooming effect of voting confusion surrounding

an object’s center in the Hough image. Moreover, the implementation of Hough Forests used here is

trained as a binary classifier (one-vs-all) and, therefore, cannot natively represent multiple classes

within the same tree. This limitation poses a problem with representing multiple poses of the same

species, as some views have conflicting spatial representations for an object’s center. This conflict

confuses training and detection, which hurts accuracy.

The evaluated version of Hough Forests improves on the efficiency and accuracy reported

in [114]. The implementation adds OpenMP [366] multi-CPU parallelization, adds new image

channels, supports multiple resolutions, drastically increases the number of binary tests performed

at each node during training, and makes more intelligent bounding box regression decisions with

the coordinates of voting patches. The details explained in this section are meant to augment the

algorithmic summary in previous work [2], which used Hough Forests to detect plains zebras and

Masai giraffes in photographs taken at the Nairobi National Park in Nairobi, Kenya.

3.3.2 Faster R-CNN

The Faster R-CNN network by Ren et al. [29] is the third iteration of the R-CNN approach

introduced by Girshick et al. [24], [190]. Each new iteration of this detector family has a more

simplified training process, speed improvements, and improved accuracy. For these reasons, there

is little benefit in evaluating the preceding R-CNN [190] and Fast R-CNN [24] algorithms in this

discussion. The motivation behind Faster R-CNN is that the Selective Search [367] candidate

proposal phase used by its precursors is a significant performance bottleneck. The authors re-

implement the bounding box candidate proposal as a neural network and brand it as a Region
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Proposal Network (RPN) to address this problem. The critical insight to training Faster R-CNN

is that the RPN is a separate network from the classification network inherited from [24], but –

to reduce processing – the two networks share most of their convolutional filters. The RPN and

classifier are given the same fixed proposals during training, and the two networks alternate back

and forth to update the weights.

During test time, the shared convolutional features are only computed once. The RPN adds

additional convolutional layers on top of the shared filters to generate localization predictions.

The benefit of this architecture is that the training is mostly unified, which dramatically increases

speed performance during both training and testing. Furthermore, replacing Selective Search with

the RPN also improves accuracy. However, the branching top of the network involves additional

complexity during training, and the network still does not quite achieve real-time performance on

GPUs. The Faster R-CNN network runs at about six frames-per-second on high-end GPUs but

achieves state-of-the-art performance for detection [35] as of 2016. The implementation of Faster

R-CNN seen in this evaluation is unmodified other than training for 30,000 iterations (with the

newer and faster “end-to-end” scheme) on different classes. Unfortunately, the training diverged

several times before a stable model was produced because the RPN failed to generate valid bounding

boxes.

3.3.3 You Only Look Once (YOLO)

The You Only Look Once (YOLO, version 1) network by Redmon et al. [28] is a variant

of single-shot detectors (e.g., SSD [167]). Single-shot detectors directly output a fixed-length

regression output for a given fixed-sized input image without needing a separate region proposal

network (RPN). Refer to Section 2.2.4 for more details. The architecture of YOLO is somewhat

unusual as it uses a relatively large input image (448×448 pixels, compared to its contemporaries

that mostly use 224×224 pixels) and produces 98 detection regions from a grid of 7×7 classification

cells. Therefore, the network’s output is always 98 bounding box coordinates along with an object

score for each of the six species classes from WILD on each bounding box.

The YOLO detector implements a truly unified network architecture. The network produces

multi-class bounding box candidates directly from a single forward inference on an image. See

Figure 3.10 for a high-level comparison between Faster R-CNN and YOLO. The benefit of a unified

integration is most notably speed for the cost of a slight drop in accuracy. For YOLO, the re-sized

training images are given to the network in batches of 64, and the error gradient for each of the
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Figure 3.10: The YOLO network is a unified architecture that is trained top-to-bottom to
minimize bounding box regression and classification error. In contrast, Faster
R-CNN has a separate Region Proposal Network (RPN) that proposes salient
object bounding box proposals, which are classified to produce class
probabilities. Faster R-CNN is trained by alternating the training between the
RPN and the classification “networks” until it converges, applying both
gradients to the shared convolutional layers. ©2016 IEEE. Reprinted, with
permission, from: J. Parham and C. Stewart, “Detecting plains and Grevy’s
zebras in the real world,” in IEEE Winter Conf. Applicat. Comput. Vis.

Workshops, Lake Placid, NY, USA, Mar. 2016, pp. 1–9.
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98 network detections is computed directly using the ground-truth bounding boxes, which are

mapped onto the range [0, 1]. The entire image is given to the network during test time, which

outputs a vector encoding of the 98 bounding box coordinates, a saliency probability for each

bounding box, and class probabilities for every 49 (7×7) classification cell. Thus, each 64×64-pixel

classification cell contributes two bounding box proposals. The bounding box saliency probabilities

are combined with the corresponding cell’s classification probabilities to create the final class

probabilities assigned to each bounding box. The class with the highest probability becomes the

bounding box label, and final detections are generated by thresholding the low scoring probabilities

and non-maximum suppression.

The YOLO network is trained to optimize a complex, multi-part loss function. The mathemat-

ical definition of the loss function is presented in [28], but – to summarize it here quickly – the loss

has five components: 1) a regression sum-squared difference loss (SSDL) for each cell’s bounding

box center x and y pixel, 2) a regression SSDL for the square-root of each bounding box width and

height, 3) a conditional SSDL for the saliency probability of whether an object exists in a bounding

box, 4) a corresponding conditional SSDL for if an object does not exist, and 5) an SSDL for the

class probabilities of each cell. [28] To combat training instability, the authors use 1) two weighting

hyper-parameters on the regression and classification loss terms to balance their respective error

gradients, and 2) a unique learning rate schedule (called “burn-in”) that starts intentionally very

slow, then increases around iteration 600 for routine training.

YOLO V2 (version 2) [196] includes specific improvements to increase the network’s ability

to detect small objects more accurately. The network includes training improvements like batch

normalization [73], multi-scale training and model improvements like anchor boxes, direct bounding

box regression (instead of predicting residuals), is fully convolutional, and has a higher-resolution

convolutional output. While these improvements helped stabilize training, the network still diverged

several times before a stable random initialization was chosen and the model converged (trained for

24,000 iterations). Since YOLO V2 consistently outperforms YOLO v1, we do not report it in this

evaluation and focus on comparing the detection performance of Hough Forests, Faster R-CNN,

and YOLO v2.

3.3.3.1 Performance Trade-Offs

The YOLO network has distinct advantages over Hough Forests: 1) it has significantly more

parameters to fit the training data, 2) has a larger effective receptive field for better regression
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performance, 3) uses convolutional feature extraction with transfer learning on ILSVRC, and 4) is

inherently multi-class. In comparison to Faster R-CNN, YOLO achieves real-time performance

and, as mentioned previously, simplifies the entire detection pipeline down to a single forward

inference. However, YOLO is more difficult to train with its poorly-behaving error gradient and has

several network-specific hyper-parameters. Like Faster R-CNN, the YOLO network (realistically)

requires a GPU to train, and both take significantly longer to train over Hough Forests. Both neural

networks were trained for about 24 hours using two Titan X GPUs, whereas the ensemble of 10

Hough Forests trees was trained in just under 3 hours on a quad-core CPU. That being said, the

testing speeds of both neural networks are at least two orders of magnitude faster compared to the

Hough Forests implementation, which runs at roughly 15 seconds per image for nine scales.

On top of training speed advantages, the Hough Forests implementation does not require

nearly as much training data. Furthermore, the convolutional filters of each neural network are

initialized with pre-trained weights [46] before fine-tuning on the dataset. Between the two deep

learning detectors, the YOLO network utilizes empty images (images with no ground-truth bounding

boxes of any species) during training with implicit negative mining, whereas Faster R-CNN was not.

This training procedure allows YOLO to see slightly more images during training, which represents

1.7% of the dataset (see Figure 3.3, density 0).

3.3.4 Results

The three detectors were evaluated by calculating the IOU (intersection over union) percentage

between the detections and the ground-truth. A detection was considered correct if 1) the bounding

box IOU ≥ 0.5 and 2) the species classification was correct. A classification error is when the IOU

threshold was satisfied for a predicted bounding box but had an incorrect species label. Otherwise,

the annotation was marked as having a localization error (not detected at all). Looking at Table 3.3

showing detection performance on the DETECT dataset, we can see that Hough Forests makes by

far the most classification and location errors. The combined YOLO network achieves the highest

number of correct detections overall but makes the most classification errors compared to the

other two algorithms; Faster R-CNN makes more localization errors but rarely makes an incorrect

classification. Hough Forests makes the fewest classification errors, but this can be deceiving since

it has almost double the number of localization errors as YOLO. Side-by-side example detections

for all of the algorithms can be seen in Figure 3.11. Overall, the YOLO V2 detector has the highest

number of correct detections (56.0%) compared to Faster R-CNN (51.7%) and Hough Forests
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Table 3.3: The number of correct detections and incorrect detections for two failure modes
(localization and classification) of each algorithm, combined for both species.
Localization errors fail to put a bounding box around an animal, while
classification errors have a correct box but the wrong species label. The YOLO
network gets the highest number of correct detections but has significantly more
classification errors than Faster R-CNN. Faster R-CNN, while it makes more
localization errors, seldom guesses the incorrect species. There are 1,343 test
ground-truth detections (714 of plains, 536 of Grévy’s, and 93 unspecified). ©2016
IEEE. Reprinted, with permission, from: J. Parham and C. Stewart, “Detecting
plains and Grevy’s zebras in the real world,” in IEEE Winter Conf. Applicat.

Comput. Vis. Workshops, Lake Placid, NY, USA, Mar. 2016, pp. 1–9.

Algorithm Localization Errors Classification Errors Correct
Hough Forests 59.6% 0.2% 40.2%
Faster R-CNN 47.8% 0.5% 51.7%

YOLO v2 31.0% 13.0% 56.0%

(40.2%) on the DETECT dataset, on top of being the fastest. Therefore, YOLO V2 is selected for

all further analyses of detection performance.

The YOLO localization model has different performance curves for each species in WILD.

The YOLO detector achieves a detection Average Precision (AP) of 57.6% for plains and 76.2%

for Grévy’s, as calculated by the area under a Precision-Recall curve. The whale fluke and sea

turtle localizations achieve an AP of 99.0% and 93.5%, respectively. This high level of performance

makes intuitive sense because a mostly rigid animal sighted against a stark background of the sea,

ocean floor, or sky will be easier to localize than a compact herd of overlapping, occluded animals.

As displayed in Figure 3.12 (left), the difference in difficulty can be seen noticeably in the relatively

poor performance of the plains zebra localizations at only 57.5%. By referencing Table 3.1 we

can see that the ratio of easy-to-find annotations (Annotations of Interest) to all annotations is the

lowest at 19.2% for plains zebras compared to the average of 42.2% for all species. Furthermore,

the ratio of annotations per image for plains zebra is the highest at 2.9 compared to the average of

1.6. Nevertheless, the YOLO localizer achieves an mAP of 81.7% across all species, suitable for

generalized detection.

The performance of the localizer is further analyzed when only annotations marked as AoIs

are considered, see Figure 3.12 (right). AoIs should be distinguishable, relatively large, and free of

significant occlusions (a formal definition of AoI is provided later in Section 3.6). The annotation
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HF PZ R-CNN PZ YOLO PZ HF GZ R-CNN GZ YOLO GZ

Figure 3.11: Example images of detections on a set of 20 images for plains zebra (PZ) and
Grévy’s zebra (GZ). The operating point was set to 0.8 for the CNNs and 0.6 for
Hough Forests (HF). ©2016 IEEE. Reprinted, with permission, from: J. Parham
and C. Stewart, “Detecting plains and Grevy’s zebras in the real world,” in
IEEE Winter Conf. Applicat. Comput. Vis. Workshops, Lake Placid, NY, USA,
Mar. 2016, pp. 1–9.
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Figure 3.12: The annotation localizer precision-recall curves (left) reports an unfiltered mean
average-precision (mAP) of 81.7% across all six species with an
Intersection-over-Union (IoU) threshold of 50%. The drastic drop in
performance of the plains zebra species can be contributed to the high number
of background – likely small-sized – annotations for this species; focusing on just
AoIs (right) increases mAP to 90.6%. ©2018 IEEE. Reprinted, with permission,
from: J. Parham et al., “An animal detection pipeline for identification,” in IEEE

Winter Conf. Applicat. Comput. Vis., Lake Tahoe, CA, USA, Mar. 2018, pp. 1–9.

localization performance drastically improves the detection Recall for all species when only AoIs

are considered, with the most improvement being achieved by the plains zebra localizations. This

improvement indicates that most of the localization errors – across the board for all species – are

from the background, small, occluded, or otherwise unidentifiable animals. Missing these detections

is less of a concern because we do not care to process them with ID. By adjusting the goal of the

localizer to focus on maximizing performance for AoIs, the YOLO model can achieve an mAP of

90.6% on the WILD dataset, a significant improvement.

In summary, the creation of annotations by the localizer sets the context for which areas of

an image are likely identifiable. Furthermore, the goal of an identification process is to match

comparable sightings of animals; one of the most primitive pieces of information for determining

if two annotations are comparable is their species. For example, it would not make sense to try

and compare a zebra to a giraffe because the match will always have a predictable (negative) result.
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However, as discussed next, knowing the species is not the only kind of ecological metadata helpful

in determining if two annotations are comparable.

3.4 Annotation Labeling

The third component of the detection pipeline is designed to re-classify the annotations

produced by the previous localization stage. The primary purpose of the annotation classification

network (also known as the “annotation labeler”) is flexibility. For example, the species-only classi-

fication output of the localizer may not be the final (or only) intended metadata for an annotation.

Furthermore, it may be impractical to retrain the entire localizer when a new classification need

comes up. A practical use case of the labeler is that it allows the pipeline to predict a species and a

viewpoint for annotations. This function is handy for identification because knowing the viewpoint

of an animal allows for incompatible annotations to be filtered out, even more so than compared to

only filtering on species. It also allows for the localization network to be trained at a different level

of abstraction when considering the ground-truth labels. For example, we may train the localizer

to focus on a general “zebra” class (e.g., to optimize localization performance) but use the labeler

to re-classify annotations as “Grévy’s zebra” or ”plains zebra”, and add viewpoint classification

support.

The labeler network uses smaller 128×128-pixel images as input; the annotation bounding

boxes from the localization network are cropped out of the original image and are re-sized to the

correct input dimensions. Input images are reduced to a 5×5×256 convolutional feature vector

for classification via convolutional, max pooling, and batch normalization [73] (BN) layers. The

network then adds a 512-dimension dense layer, followed by a feature pooling layer, a Dropout layer

(p = 0.5), and another 512-dimension dense classification layer. The species and viewpoints are

combined into paired classifications for the last dense layer of the network (activated by softmax),

and the model’s weights are optimized using the standard categorical cross-entropy loss.

The annotation labeler’s architecture is similar to the WIC component, except it performs a

standard single-prediction, multi-target classification. In addition, a separate set of weights (also

initialized with transfer learning) is intentionally trained for the convolutional feature extractors

in the WIC and labeler detection pipeline components. This separation increases redundancy but

also allows for specialized filters to be learned for each task; each detection component can be

independently optimized without needing to re-validate the performance impact of a unified feature

extraction across the entire pipeline. Another reason the convolutional filters are not shared across
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components is that the input image sizes are fundamentally very different since they are trying to

capture different levels of detail. For example, the WIC is tasked with animal existence at an image

level. In contrast, the labeler is sometimes tasked with differentiating similar species and viewpoints

at an annotation level.

3.4.1 Results

The annotations are labeled with a viewpoint of the animal relative to the camera. The

viewpoints for zebras and giraffes in the WILD dataset are labeled with one of 8 discretized

yaw locations around the animal, from the set {front, front-right, right, back-right,

back, back-left, left, front-left}. Sea turtles are commonly captured from above and

sometimes from below, so their allowed viewpoints are constrained to the set of six viewpoints

{front, right, back, left, top, bottom}. Whale flukes also have a similar restriction

where they are label from a set of 4 {top, bottom, right, left}, with the most common

being bottom when the angled fluke is viewed above water. The species and viewpoints pairs are

combined into 42 distinct combinations (in the form species:viewpoint) to create the set

of available classification labels for training. The label pairing used by the annotation classifier

does cause an inherent class imbalance, but achieving balanced viewpoints across all species in a

real-world, unstructured setting is an impractical goal. The real-world implication is that balanced

training data for all categories is seldom possible when viewpoints are considered. Hence, the

labeler needs to have some mechanism to counteract its effect on training. The labeler addresses

this problem by identifying the species and viewpoint combination with the fewest examples and

sets a maximum number of examples for all categories in a given epoch as a fixed multiplier of that

minimum (the experiments here set the multiplier to 4).

As seen in Figure 3.13, the species-specific ROC curves achieve at least 96.7% AUC across

all species in the WILD dataset. The species ROC operating curves in this figure are calculated by

taking an average over the associated ROC curves for its respective viewpoints. Furthermore, the

effect of species and viewpoint classification can be visualized in Figure 3.14. The overall accuracy

of species and viewpoint combination classifications is 61.7% over 42 distinct categories for species

and viewpoints combined. The accuracy improves from this baseline when we consider how slight

changes in viewpoint impacts identification (i.e., a ± 45% degree shift in yaw is tolerable [261] for

giraffes and zebras), which achieves an 87.1% “fuzzy” accuracy. The white squares in Figure 3.14

indicate different species, and any values in the matrix outside of the squares represent incorrect
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Figure 3.13: The ROC performance curves for the annotation classifier (labeler) suggests that
the component is very accurate at predicting the species of an annotation. ©2018
IEEE. Reprinted, with permission, from: J. Parham et al., “An animal detection
pipeline for identification,” in IEEE Winter Conf. Applicat. Comput. Vis., Lake
Tahoe, CA, USA, Mar. 2018, pp. 1–9.
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Figure 3.14: The classification confusion matrix for the annotation classifier (labeler),
marked with abbreviated {species:viewpoint}. The species abbreviations
are: MG for Masai giraffe, RG for reticulated giraffe, ST for sea turtle, WF for
whale fluke, GZ for Grévy’s zebra, and PZ for plains zebra. The viewpoint
abbreviations are: left (L), front-left (FL), front (F), front-right
(FR), right (R), back-right (BR), back (B), and back-left (BL). The
white boxes represent the separate species classes where values outside of these
boxes indicate incorrect species predictions. The classifier predicted the correct
species and viewpoint for 61.7% of the examples and the correct species for
94.3% of the examples. ©2018 IEEE. Reprinted, with permission, from: J.
Parham et al., “An animal detection pipeline for identification,” in IEEE Winter

Conf. Applicat. Comput. Vis., Lake Tahoe, CA, USA, Mar. 2018, pp. 1–9.
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Figure 3.15: The locations of SIFT keypoints are not semantically constrained to the animal
body and, if added to an identification search database, can confuse the ranking
algorithm and exacerbate known issues like scenery matching. The coarse
background segmentation model allows for SIFT keypoints to be down-weighted
based on how much they contain background information. Yellow keypoints
have a higher weight compared to blue keypoints.

species classifications. If we examine the errors outside the white boxes, then the inter-species

classification accuracy is 94.3%. We can see that the majority of the inter-species classification

error is between the two sub-genus species of giraffes (37.4% of the species classification errors)

and some extra error between the two zebra classes (25.2%). These failures make intuitive sense

as the species look relatively similar and can have subtle differences between their appearances at

oblique viewpoints. It is worth noting here that the whale fluke and sea turtle species have almost

no inter-species confusion, supported by their ROC AUC values of 99.8% and 98.3%, respectively.

Of the species errors made, 62.9% are due to incorrect sub-genus giraffe and zebra classifications.

In summary, the overall genus (zebras vs. giraffes vs. whale flukes vs. sea turtles) classification

accuracy is 97.9%.

Now that we have bounding boxes with species and viewpoint labels, we need to consider

how well the boxes represent the animals they surround. The use of axis-aligned bounding boxes is

a good tool for finding animals but can be an inefficient structure when used to represent animals

that are not rectangular. For example, giraffes have long legs and necks, and a rectangular bounding

box around an animal can include considerable amounts of distracting background information.

The next component is designed to address this problem by roughly distinguishing an animal from

its surroundings.
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3.5 Coarse Background Segmentation

The fourth detection pipeline component attempts to produce a coarse segmentation of an

animal. The modifier “coarse” is intentionally added to the method description because it is

not meant to be (or compete with) a pixel-level semantic segmentation algorithm [162], [190],

[224], [365], [367]. Instead, a classification technique is presented that approximates a pixel-level

segmentation by creating a binary classification map. The task is to take an annotation (with a

species provided by the labeler) and roughly classify which pixels belong to that species versus the

background. The goal is to generate a rough background mask that can eliminate or otherwise down-

weight distracting non-animal pixel information. For example, the output of this component can be

used to calculate weights for SIFT [39] keypoints and the features used by an identification pipeline.

An example of this type of keypoint weighting can be seen in Figure 3.15 with the HotSpotter

algorithm [261]. Key design features of this component are: 1) it only requires species-labeled

bounding boxes for ground-truth and does not require fully-segmented images, 2) it is trained on

small positive or negative patches as a binary classifier, and 3) it is applied fully convolutionally

across an entire input image to produce a rough semantic segmentation map.

The annotation background segmentation approach uses a distinct type of neural network

architecture called a Fully Convolutional Neural Network (FCNN) [27]. An FCNN is a special kind

of CNN with no dense (fully-connected) layers and supports arbitrarily large input image sizes. This

input size flexibility requires that the network be composed entirely of convolutions, pooling layers,

or other non-rigid layers. This design feature is exploited by training the network on a fixed input

size and performing forward inference on an arbitrarily large image (that must be equal to or larger

than the training size). During training, 48×48-pixel input patches are reduced via convolutional

and max-pooling layers to a 1×1-pixel patch with 128 channels (a spatial size of one pixel). It is

then classified with a dropout layer(p = 0.4) and a (1×1 Network-in-Network [49] convolutional

layer with two outputs (binary classification). During inference, the network’s output is expected

to increase to W×H×128, where W and H are down-sampled resolutions of the original input

size (at least 48 pixels), and the classification output is run to produce a binary classification map

of size W×H×2. An FCNN can be efficiently applied across an entire image, without the need

to resort to computationally intensive methods like sliding windows [18], shift-and-stitch [20], or

memoization [368]–[370]. Importantly, the last layer’s softmax activation is applied along the

channel dimension, which means it can dynamically expand to the spatial output of a test image to

create an automatic classification map.



70

Figure 3.16: An illustration of the background segmentation patch sampling (using giraffes)
and the utility of a cleaning procedure. The target giraffe (green, solid) has a
collection of labeled positive patches (blue and red) and negative patches
(orange) that are sampled outside the bounding box. The blue patches are true

positives whereas the red patches are incorrectly-labeled true negatives. The goal
of the cleaning procedure is to convert all red boxes into orange boxes
automatically. Best viewed in color. ©2018 IEEE. Reprinted, with permission,
from: J. Parham et al., “An animal detection pipeline for identification,” in IEEE

Winter Conf. Applicat. Comput. Vis., Lake Tahoe, CA, USA, Mar. 2018, pp. 1–9.

3.5.1 Patch-based Training

The patch training data is generated by selecting a target annotation and resampling its image

such that the bounding box has a fixed width of 300 pixels. Then, random patch locations are

sampled uniformly across the image (and for a range of scales) where positive patches are centered

inside the annotation (or an annotation of the same species), and negative patches are centered

outside all annotations for that species. Positive patch exemplars are therefore species-specific

and are meant to cover sub-regions within an animal body. In contrast, negative patches represent
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background foliage, terrain, and other animals of different species.

The proposed positive patch sampling scheme can be problematic, however. The bounding

box localizations of giraffes, for example, generally have large amounts of negative space around

the neck and the legs (see Figure 3.16). When positive patches are sampled from inside giraffe

bounding boxes, some are incorrectly labeled as positive that contain only negative background

pixel information (red boxes). A self-supervised cleaning procedure is used during training to help

correct label noise in the dataset. At the start of training, the network is given the original labels and

asked to perform binary classification on the data as-is. Each time the learning rate decreases (and

only after the model achieves an overall accuracy ≥ 90%), the currently learned model is run on

the training and validation data to find any incorrect labels. Any label with a ≥ 95% prediction of

belonging to the opposite ground-truth label is automatically “cleaned” and its binary label flipped.

The cleaning procedure has been found to help smooth out training and drastically improve the final

results’ qualitative performance.

3.5.2 Results with Fully-Convolutional Inference

Since the annotation background network was trained on noisy, patch-based data – and

with the lack of fully-segmented ground-truth in WILD – a quantitative segmentation metric for

the model’s performance cannot be provided. However, looking at Figure 3.17, the background

segmentation network performs well on various annotations of a known species to classify regions of

the image as background and foreground. In this figure, the binary output masks of the background

classification network are combined with their associated input annotations. Something to note

is that the lack of distinction between class instances and animals with the same species in the

annotation will not be masked out. Work by Crall (see Section 3.5.4 in [13]) shows the positive

impact of using the coarse background segmentation; overall, identification matching accuracy

improves when a background mask is used for feature weighting. The experiment presented in that

work shows top-1 ranking improvements for Grévy’s and plains zebra of approximately 5% for

comprehensive ID experiments.

The creation of segmentation maps helps reduce the distracting background information within

an annotation. However, we have not addressed the problem of knowing which annotations are

producing distracting foreground information. For example, an annotation may show an occluded,

blurry, or truncated (cut in half by a tree) animal and should ideally not be provided to ID. Therefore,

the next pipeline stage takes a step back and determines which annotations in an image were likely
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Figure 3.17: A grid of background classifications for six species shows that the component is
able to learn useful background subtraction masks. These masks function as
semantic segmentations between the species of interest and the background and
do not distinguish animal instances. ©2018 IEEE. Reprinted, with permission,
from: J. Parham et al., “An animal detection pipeline for identification,” in IEEE

Winter Conf. Applicat. Comput. Vis., Lake Tahoe, CA, USA, Mar. 2018, pp. 1–9.
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captured by accident. The general assumption is that incidental background sightings most likely

have less useful visual information for ID and should be filtered out proactively.

3.6 Annotation of Interest (AoI)

The fifth and final detection component focuses on determining which animal annotations

in an image are good candidates for identification. The goal of AoI classification is to try and

answer the question, “why did the photographer take this picture?” and is tasked with distinguishing

the animals that were the intended subject(s) (i.e., the “Annotations of Interest”) from incidental

background sightings of animals. It is important to note that this task tries to understand the

composition of an image a posteriori to help guide ID and is not concerned with the aesthetic form

of a particular image or calculated focus points. Instead, the Annotation of Interest (AoI) classifier

identifies the most prominent animals in the image because they are likely to be the most identifiable.

While state-of-the-art object detection algorithms are often compared and evaluated on their ability

to localize all objects of interest captured in an image – regardless of the pose, lighting, aspect ratio,

focus, scale, level of obscurity, or degree of truncation – a different objective is needed when animal

ID is the intended use case: one that can be optimized for only detecting identifiable animals. To do

this, though, we first need to know which annotations are even identifiable because the value of an

animal detection should be fundamentally tied to the amount of identifying visual information it

provides.

Figure 3.18 shows a motivating example for why the concept of AoI is needed. There are 22

plains zebras in this picture, presenting five different viewpoints and varying degrees of truncated

and obscured animals. The classic formulation of object detection would expect 22 bounding boxes

as the optimal output. In terms of identifiability, it is clear that the green highlighted box offers the

best visual information out of all of the animals that are seen. The animal is well lit, in focus, not

obscured or truncated, captured at a good resolution, and was perhaps the primary subject of the

image when the photographer took the image. The dark blue box arguably ranks as the second-best

zebra annotation but is slightly out of focus and is half-occluded. Did the photographer intend to

photograph the blue animal, or was it simply in the background? Perhaps either way. The red box

(upper right corner), in contrast, is an animal that is significantly obscured by grass and is most

certainly an accidental capture because it offers almost no usable information for ID. While the red

box may be a challenging detection to predict correctly (i.e., an understandable failure), we can

expect that the light blue box to be within the capabilities of a modern, deep learning-based object
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Figure 3.18: An example image captured by a citizen scientist during an animal photographic
census. We may ask, “which animal was the intended subject of this image (if

any)?” The animal with a green box around it is the Annotation of Interest for
this image and all other animals should be considered incidental background
sightings.

detector to find correctly (and predict a species and viewpoint label as a left-side plains zebra). The

problem is that the light blue box could be considered a legitimate detection even though it offers

little identifying information and is only slightly more valuable to ID than the red box. As such, the

green box was most likely the intended subject considering the scene’s composition and should be

regarded as an AoI. Only the green box should be considered an AoI in this image, and all other

animals are incidental sightings of animals in the background. The critical insight with AoI is that

the localizer can de-prioritize failures for background animals because they often do not contribute

meaningful ID information. To define the concept more formally, an AoI should have most or all of

the following properties:

• is of a distinguishable individual animal (i.e., free-standing, well-lit, clearly visible),

• is relatively large and has decent resolution,

• is commonly located near the center of the image, and

• is in focus and not blurred
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Conversely, an annotation should not be considered an AoI if it has one or more of the following

opposite properties:

• is a part of an overlapping herd or group of animals

• is relatively small or contains few pixels

• is out of focus or is otherwise blurry

• is located around the edges of the image

• is occluded by other animals or objects by area ≥ 25%

• is off the edge of the frame of the image by area ≥ 25%

The properties of AoIs demand that an annotation not be reviewed in isolation (i.e., by only viewing

its cropped sub-region). The decision that an annotation is an AoI must be made by weighing

the entire image context as well as against any other accompanying annotations. This process is

naturally subjective and can be hard to determine reliably for borderline cases. Further, because

these conditions are relatively strict, there are rarely more than one or two AoIs in a particular

image, and some images with detected annotations have no AoIs. In summary, the reason to use

Annotations of Interest is motivated by its two primary use cases:

1. preventing partial-animal, background, and otherwise visually distracting detections from

entering an automated animal identification pipeline, and

2. training citizen scientist volunteers on how best to take high-quality images for photographic

censusing.

Annotation of Interest was the first attempt at addressing the annotation filtering problem. Sub-

sequent analysis in Chapter 5 describes, evaluates, and deploys a more thorough and successful

approach to the annotation filtering problem for animal ID. Nevertheless, the following discussion

is still helpful since AoI is an image-level determination for the subject of an image and still helps

with accurately tuning the localizer for finding well-formed annotations.

3.6.1 AoI Ground-Truth & Labeling Variability

The decision to label an annotation an Annotation of Interest is inherently subjective. It is,

therefore, important that an image and all of its annotations be analyzed by multiple reviewers when

ground-truth labels are being generated for training and evaluating AoI methods. The ground-truth

annotations in the WILD dataset were distributed to five different teams for labeling. Each team had

different background training and skillsets and – even when provided with the exact same definition

of an AoI and a handful of examples – had different implicit reasonings and motivations for their
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Table 3.4: The number of the ground-truth AoI decisions made by different teams of human
reviewers. The teams were given the same instructions but split by their respective
domains of expertise.

Team Group AoIs

1 Ecologists 5,166
2 Data Engineers 6,829
3 Computer Vision 5,729
4 Data Scientists 6,174
5 Author 5,547

decisions. A brief description of each team is shown in Table 3.4 along with the total number of

AoIs they marked (out of 9,871 considered annotations in the dataset). The final ground-truth AoI

labels for the annotations in WILD were created with a simple majority rule, requiring at least three

out of the five teams to agree that an annotation needed to be considered an AoI.

The distribution of the labeling work was parallelized in two ways: across teams to increase

redundancy and within teams to increase throughput. The “ecologist” team was comprised of

biologists and equid experts, plus an array of undergraduate and graduate students, at Princeton

University. Working alongside the team of ecology researchers, a “data engineering” team comprised

of data and software engineers based in Portland, OR also reviewed the same images to make

independent AoI decisions. The third “computer vision” team included computer vision and

algorithm researchers at RPI, and the “data scientist” team was a group of data scientists and social

network researchers at the University of Illinois, Chicago. Each image in WILD was reviewed

by at least one ecologist, one software engineer, one computer vision researcher, and one data

scientist. Lastly, the author of this dissertation worked alone (as the creator of the AoI concept) to

independently label all of the annotations in the WILD dataset. The variance between the various

teams is relatively high, with the ecologist team deciding only 52.3% of the annotations were AoIs

compared to 69.2% by the data engineer team. The average number of AoIs is 5,889±571 across

all teams, representing 59.7% of all detections in the dataset, but only 3,598 annotations (36.5%)

had a majority vote by at least three teams.

With ground-truth labels for AoI assigned to the dataset, we can analyze the unique qualities

of AoIs and how they present themselves in images. Figure 3.19 plots the spatial distributions (on

a normalized unit square) of AoI bounding boxes (right) as compared to all annotation bounding

boxes (left) in the WILD dataset. We can see that the centers of AoI bounding boxes seem to be
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Figure 3.19: The distribution of bounding box center locations (on a unit square) for all
annotations (left) and AoIs (right). Annotations of Interest are much more
uniform and biased towards the center.

biased towards the center of the image. The area of AoI bounding boxes (shown in Figure 3.20), as

calculated by a percentage of the area of the whole image, also shows a clear inverse correlation

with annotation size. These results make intuitive sense because 1) an AoI is most likely going to

be near the center of the image because it is strongly associated with finding the subject of an image

and 2) any annotation that occupies under 20% of the image area is most likely not an AoI because

it is not sufficiently large to capture enough visual detail for the animal.

3.6.2 Results

The AoI classifier has a very similar convolutional and dense layer structure to the whole-

image classifier (WIC) component, except for three differences: 1) it takes as input a 4-channel input

image, comprised of red, blue, and green color channels stacked with a fourth annotation bounding

box mask, 2) the output layer (with a softmax activation function) has only two outputs for simple

binary classification, and 3) the network weights are optimized using categorical cross-entropy loss.

Examples of positive and negative training input images can be viewed in Figure 3.21. The end goal

of the AoI classifier is to eliminate the need to perform identification processing on the background

and partially visible animals, and we will see in later chapters causes an increase in the total amount

of work needed by human reviewers.
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Figure 3.20: A histogram of the total number of annotations and AoIs (y-axis) as a function of
the percentage of the image area (x-axis, in 11 buckets each with a size of 10%).
This shows that AoIs, compared to annotations in general, are much less likely to
be small annotations.

The AoI classifier achieves an overall accuracy of 72.8% on the held-out test data (521 true

positives, 1,268 true negatives, 506 false positives, 164 false negatives) when using a confidence

threshold of 84%. Figure 3.22 shows ROC curves for each species. Ironically, the AoI classification

performance of plains zebras shines, further supporting the claim that the background annotations

for plains zebras in WILD are not good identification candidates. However, we can see that the sea

turtle and whale fluke AoI results are very close to random. This poor performance is not surprising

because those categories have the lowest percentage of AoIs relative to the number of annotations for

that class, and the classifier struggles on solitary species with ambiguous AoI definitions. The AoI

classification is objectively the worst-performing component of the detection pipeline as it struggles

with the overall ambiguity of the concept. However, the primary goal of AoI selection is to reduce

the overall number of poor annotations that are passed along to an identification pipeline. From

this point-of-view, the AoI classifier correctly eliminates from processing 71.5% of background

annotations at the cost of missing 23.9% of the positive AoIs. Furthermore, the ground-truth AoI

data helps to better configure the localizer models during test time.
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Figure 3.21: A positive AoI training example (top row) is comprised of the resampled RGB
image (left) and the annotation segmentation mask (middle). The right-most
column depicts their combined representation. As shown in the negative
example (bottom row), the masked annotation is of an occluded, background
animal and is not an AoI. ©2018 IEEE. Reprinted, with permission, from: J.
Parham et al., “An animal detection pipeline for identification,” in IEEE Winter

Conf. Applicat. Comput. Vis., Lake Tahoe, CA, USA, Mar. 2018, pp. 1–9.

Let us now review the entire detection pipeline. The detector pipeline produces a set of

bounding box annotations from pre-filtered images. Each of those annotations has a species and

viewpoint label, a background mask, and an AoI classification, which can all be used to filter out

irrelevant or distracting annotations or reduce distracting scenery. Furthermore, the design of each

of the above components puts few requirements on training data and can be bootstrapped quickly

for new species using only bounding boxes. While the specific components in this pipeline are not

novel implementations – and an in-depth analysis using alternative methods is not provided for most

of the components – that is not the core contribution. Instead, the point of the pipeline is to define a

modularized structure for general animal detection, and its claim to novelty is in its comprehensive

understanding of how animal detection is needed for real-world applications on animal ID.
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Figure 3.22: The ROC performance curves for the AoI classifier. The species with the best
AoI classification performance is plains zebra, mostly due to the lower AoI to
annotations ratio. The AoI classifier performs the worst on whale flukes and sea
turtles because it is harder to tell when solitary animals should be considered
AoIs. ©2018 IEEE. Reprinted, with permission, from: J. Parham et al., “An
animal detection pipeline for identification,” in IEEE Winter Conf. Applicat.

Comput. Vis., Lake Tahoe, CA, USA, Mar. 2018, pp. 1–9.
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Figure 3.23: An example annotation of a sea turtle (orange) with a rotated part annotation
for its head (green). The dashed line indicates the “top” of the annotation.

3.7 Additional Components & Applications

The core detection pipeline presented up till this point can be extended to work with additional

components and specific application use cases, which we will explore in this section. All of the

components presented here should be considered optional; these examples are also intentionally

separated from the above pipeline because they require additional ground-truth training data and

should be implemented as needed to keep the burden low on human reviewers.

3.7.1 Annotation Bounding Box Orientation

One of the most significant optional components has the goal of rotating axis-aligned anno-

tations produced by the localizer17. The reason orientation is essential is that ID algorithms can

be susceptible to rotation and, for example, can fail to match an annotation correctly if it is upside

down compared to a database of consistently rotated annotations. The orientation of annotations

17Portions of the work described in this section were completed by Olga Moskvyak [263] under an unpublished
research contract with Wild Me, a Portland, OR not-for-profit. The author of this dissertation designed the orientation
component, its mathematical definition, and evaluated its impact on ID results, but the external collaborator did the
orientation implementation and a stand-alone performance evaluation. All work and results are reproduced with
permission.
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Figure 3.24: The regression network is designed to predict five values: xc, yc (in yellow) give
the center of the new bounding box, xt, yt (in red) give the center the “top side”
of the box, and the width w of the bounding box.

should not be confused with its viewpoint. The viewpoint is the side of the animal that is seen (e.g.,

left-side), but orientation is the rotation on the annotation such that it has a normalized view (e.g.,

putting the feet of a left-side zebra at the bottom of the annotation). Furthermore, if we rotate an

axis-aligned bounding box that is snugly fit to the animal, the new box may be slightly too large or

too small in a given direction. Therefore, we want to rotate the original bounding box and modify it

to fit appropriately. An example rotated ground-truth annotation can be seen in Figure 3.23 for a sea

turtle head used for ID.

The input to the orientation component is an image with an original axis-aligned rectangle

bounding box from the detection pipeline. The component’s output is an oriented and directed

bounding box specified by a new bounding box (x-axis top-left, y-axis top-left, width, height) and

rotation angle (θ) applied at the center of the box. The network’s architecture was designed to be

used with multiple species and has a generalized training procedure. The network was trained on

sea turtle heads, sea dragon heads, right whale bonnets from an aerial viewpoint, hammerhead
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Table 3.5: The performance accuracies for the orientation component. The predicted
orientations are correct within 20 degrees for the majority of species.

Species ±10 Degrees ±15 Degrees ±20 Degrees
Sea Dragon Heads 95.20% 97.73% 98.11%
Whale Shark 87.91% 93.28% 94.63%
Sea Turtle Heads 84.64% 91.64% 94.71%
Spotted Dolphin 81.04% 88.08% 91.83%
Right Whale 81.34% 83.92% 84.78%
Manta Ray 67.55% 74.96% 79.28%
Hammerhead Shark 52.19% 61.56% 66.14%

shark bodies, manta ray bodies, and spotted dolphin bodies. The component is implemented as a

regression network and produces five floating-point values xc, yc, xt, yt, and w. These values are

illustrated in Figure 3.24 for a right whale head. In particular, xc, yc (in yellow) gives the center of

the new bounding box, xt, yt (in red) gives the center the “top side” (indicated by a dashed line)

of the bounding box, and the width w of the bounding box. The height of the rectangle is defined

as 2 ∗ sqrt((xc − xt)
2 + (yc − yt)

2) and there is no constraint that the height must be greater than

the w width value. The direction from the center point to the center of the top side is calculated as

atan2(yt − yc, xt − xc) and the range can cover a full 360 degrees. If w′, x′

c, y′

c, x′

t and y′

t are the

outputs for a given ground-truth box, then the loss is defined simply as:

L(w, xc, yc, xt, yt) = (w − w′)2 + (xc − x′

c)
2 + (yc − y′

c)
2 + (xt − x′

t)
2 + (yt − y′

t)
2 (3.3)

Orientation models were trained using the same model architecture and the same training setup

for all species. Extensive data augmentation was used to extract a randomly rotated annotation for

each mini-batch. The performance of the component varies from species to species: good results

were achieved on sea dragon heads, whale sharks, sea turtle heads, spotted dolphins, and right

whales where ground truth annotations are consistent, but predicting orientation on manta rays and

hammerheads was challenging due to variety of underwater viewpoints and poses. The accuracy of

predicting an angle of orientation on a test set at 10, 15, and 20 degrees thresholds can be seen in

Table 3.5.

Lastly, we can compare the impact of orientation on ID performance. Orientation results for
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Figure 3.25: The head of a right whale has white callosity patterns that can be used for ID.
Orienting the head detections to point up improves ID performance.

Figure 3.26: The top-k recall performance curves for the HotSpotter algorithm on right
whale bonnets. The ground-truth annotations (black line) shows stellar ID
performance while randomly rotating the annotations (blue solid) and
axis-aligned boxes (red solid) show significantly worse performance. Using the
orientation network to rotate the random boxes (blue dashed) and the aligned
boxes (red dashed) significantly reduces the recall error and approximates the
ID performance of hand-drawn boxes.
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held-out right whale images are shown in Figure 3.25. The benefit of having oriented annotations

(right for each column) is that the annotations are much more directly comparable, allowing an

identification algorithm to match the images without handling orientation by itself. Using the

HotSpotter ID algorithm [261] to match the right whale images, Figure 3.26 shows that orientation

plays a significant role in accurate ranking performance. We can see that ground-truth box ID

performance (black line) is very good at approximately 90% top-1, and randomly rotated boxes that

are then fixed by the orientation network (blue dashed line) are only about 10% worse in match

performance. Furthermore, the corrected boxes (red dashed line) perform significantly better than

the original axis-aligned boxes (solid red line) produced by the detector, improving ID accuracy by

over 20% rank-1.

3.7.2 Part Bounding Box Localization & Assignment

A second use case that is very useful is localizing specific parts for an animal18. A part of

an animal is sometimes the better candidate for ID compared to the full-body annotation. For

example, a sea turtle – as discussed in Chapter 2 – does not have reliable ID information on the

shell. The patterns change over time, and more stable facial patterns can be used for visual ID. The

localizer component in the detection pipeline is optimized for finding the complete body annotation

for a given animal. However, often a part like a head or an ear needs to be localized as well. We

can see an example of this from the orientation network discussion and Figure 3.23 where a part

bounding box for a sea turtle head is added to an existing annotation for the sea turtle’s body. Using

parts is also convenient for some ID algorithms, like CurvRank [291] that rely on contours. For

example, extracting part bounding boxes for dorsal fins or elephant ears can be beneficial since

contour-based algorithms need a consistent starting point and a way to find specific parts of an

animal. The interface shown in Figure 3.27 gives an example of elephant ear detection that was

produced by the detection pipeline that was trained to find left-side only ears for African elephants

(Loxodonta).

The detection of parts alongside body annotations presents two unique challenges for the

detection pipeline. First, the localizer’s standard non-maximum suppression (NMS) technique

must be context-aware, ensuring that body annotations do not suppress part boxes that will likely

significantly overlap. Second, part boxes need to be associated with a parent body annotation

18The work on the part-body assignment component was done by Drew Blount, an employee of Wild Me, and it is
included here for completeness. All work and results are reproduced with permission.
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Figure 3.27: An example outline contour (blue line) of an African elephant ear detection, with
occluded regions (yellow) highlighted by a reviewer.

so that the ID results are associated correctly in the ID database. The NMS problem is solved

by treating parts as distinct from body annotations and applying the traditional algorithm to both

sets independently. Once NMS has been applied separately, the resulting boxes are combined to

form the final predictions. The second problem of assigning the boxes was achieved by training a

random forest classifier on a hand-engineered vector with 37 feature dimensions. The feature vector

encodes the location of two annotations’ bounding boxes, the center locations of their boxes, their

respective areas, the distance between their centers, the amount of overlap, and other geometric

values that are scaled to have are unit size. The classifier is then run on all combinations of predicted

annotation and parts from the detection pipeline to produce a confidence value for how likely a

given part should be matched with an annotation. A greedy assignment algorithm then attempts

to assign the most confident parts assignments to an annotation until either all parts are assigned,
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Figure 3.28: The detection pipeline can be run on tiles extracted from aerial imagery to find
animals for population abundance surveys.

all annotations have precisely one part assignments, or a global minimum confidence threshold

is reached. When evaluating sea turtles, this “assigner” component is 88% accurate for held-out

test part-body assignments. Most of the images in a test set that had errors were from duplicate

detections that could not be associated. For the images that contained multiple turtles and heads,

however, 98% of the assignments were correct.

3.7.3 Image Tiling & Overhead Imagery

We next examine a different use case for the detection pipeline. The pipeline is designed

and verified extensively in ground-based animal ID applications, but it can be modified slightly to

process overhead aerial imagery for wide-area population counts [371]–[373]. Aerial surveys offer

a unique challenge to the detection pipeline because 1) fast filtering of negative images is needed

(the vast majority will not show any relevant activity or animals) and 2) positive images are hard to
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find [374]. In addition, animals that are photographed at altitude can be challenging to detect due to

being very small (sometimes only a handful of pixels across), occluded by foliage like tree cover, or

are not very distinctive against the background terrain (e.g., the sleek, round back of an elephant

can look like a grey boulder in some lighting conditions). Thus, to accurately apply the detection

pipeline on aerial images, the analysis needs to be restricted to small areas of an input image so that

the relative scales of the animals are more appropriate for the pipeline.

The detection pipeline uses a localization component (YOLO) that computes results from

a 448×448-pixel image. If an original aerial image were down-sampled to that resolution, any

animals in the photo would be reduced down to, optimistically, only a few pixels, and reliable

detection would be impossible. The detection pipeline can be modified slightly to first extract a

grid of overlapping tiles across the image. The existing components can then be applied to smaller

regions of a more proper native resolution. Figure 3.28 shows a small section of an aerial image

that was taken during an elephant population survey. The image was tiled up with two overlapping

grids (an orange grid and a second blue grid) of smaller 500×500-pixel regions. The orange grid is

overlaid onto the image to densely cover as much of the image area as possible while at the same

time not creating partial tiles (respecting a margin on the border). Each adjacent tile in the orange

grid overlaps by 25%. Animals on the margin of a tile are therefore analyzed multiple times. A

second blue grid is extracted using the same process as before to prevent edge cases between tiles;

this second grid has a global 50% shift and centers all of its tiles where the corners of orange tiles

meet. An additional set of grey overlapping tiles (not pictured here) is also extracted along the

border of the input image to capture any additional missing animals.

The tiles that contained ground-truth elephant bounding boxes (in yellow) are marked as

positive tiles and are highlighted with a green border. For example, the figure has nine ground-

truth elephant bounding boxes and shows ten orange and seven positive blue tiles that contain

elephants. The complete set of positive tiles and their ground-truth detections can be seen at the

bottom of Figure 3.28. The detection pipeline is then trained and applied like normal by treating

tiles as its input: the whole-image classifier can be used to identify tiles that are likely to contain

animals, the localizer finds bounding boxes within tiles for animals, and the labeler can be used

for species classification. Since these animals are likely not captured at a sufficient resolution for

ID, the motivating goal of the detection pipeline should be to maximize the accuracy of counting.

Furthermore, the lack of detail suggests that the work to produce a coarse segmentation is not

particularly worthwhile. Likewise, the AoI filtering is not applicable in these situations and can be
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ignored. After the detection pipeline is applied on a series of tiles, the results are then re-mapped

onto the original input image. Finally, non-maximum suppression is applied to the aggregated

animal detections to eliminate duplicates and provide the final output.

3.8 Summary

The detection pipeline proposed in this chapter provides a comprehensive process for pro-

cessing raw images of animals into sightings that are useful and relevant for identification. The

pipeline uses a whole-image classifier to filter images quickly, a localizer and labeler to produce

annotations with species and viewpoint labels, a coarse background classifier to produce approxi-

mated segmentation maps, and an AoI classifier to identify foreground vs. background annotations.

Further, the pipeline can be extended to add functionality for orienting annotations, localizing

and assigning parts of animals with detected bodies, and processing imagery from aerial surveys.

The entire pipeline is designed to be easily bootstrapped for new species and relies on training

data – bounding boxes with various metadata – that is quick to annotate and trivial to parallelize.

Finally, the pipeline’s contribution is evaluated on two new datasets and shows that it can produce

high-quality candidate annotations for animal ID.

As a summarizing example, the output of the detection pipeline can be seen in Figure 3.29 as

applied on the example image we started this chapter with (Figure 3.1). All of the annotations were

detected as plains zebras by the annotation classifier. The WIC suggested the species in the image

were Grévy’s and plains zebras, with Plains zebras being the highest score (a correct classification).

All other species (giraffes, whale flukes, sea turtles) had a score of less than 1e−4, without making

contextual assumptions about which animals would have been impossible based on GPS location

(e.g., you would not find a whale fluke out in the African Savannah). The AoI classifier selected

two annotations (in red) for further processing by the identification pipeline. Identifying only a

predetermined side of the animals is critical because their visual appearances are not symmetric

between left and right. As such, the only annotation that would be processed from this image would

be the most foreground animal, facing left, and its corresponding annotation in the bottom left

corner of the figure.

Overall, the detection pipeline is able to achieve a whole-image classification accuracy of

64.8% for 6 species but rarely (around 3.5%) produces false negatives, making it an ideal first-

pass filter; the localization component has a mAP of 81.7% for 6 species but is able to perform

much better on primary animals (Annotations of Interest) with a mAP of 90.6%, which makes
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Figure 3.29: The output of the detection pipeline on Figure 3.1. The WIC produced a
classification of 83% for plains zebra (and 71% for Grévy’s), and the localizer
found eight annotations. The labeler’s output can be seen for each annotation
box, and the AoIs are highlighted in red. For photographic censusing, picking
the left-side plain zebra AoIs filters the output to only one annotation, the
desired one for ID processing.

it a promising approach for finding detections that are useful for ID; the labeler has an accuracy

of 61.7% over 42 unique categories but is able to accurately estimate approximated viewpoints

87.1% of the time and the correct species for 94.3% of examples, providing an accurate way to filter

for relevant and comparable annotations; the coarse segmentation algorithm does an excellent job

at providing background weights for matching algorithms while only being trained on bounding

boxes, which has been shown to improve ID performance by around 5% for zebras; lastly, the

AoI component has an accuracy of 72.8% across six animal species but the success of the concept
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shows that it is possible to filter annotations based on how identifiable they are. The Wildlife Image

and Localization Dataset (WILD) is also introduced, which contains 5,784 images and 12,007

labeled annotations across 30 classification species and a variety of challenging real-world detection

scenarios; the DETECT dataset is also contributed for 6,655 annotations for plains and Grévy’s

zebra. The use cases of the detection pipeline have also been successfully demonstrated to correctly

orient 87% of annotations (within 20%) for seven species, find and associate parts of animals to the

body of animals, and detect animals in aerial surveys.

The detection pipeline, as a whole, is a significant contribution because it demonstrates that it

is possible to automate wholesale amounts of the tedious image preparation work for photographic

censusing. Of course, the detection pipeline is not perfect. The discussion above has shown that

most of its mistakes are trivial or concern animals that fundamentally do not matter for ID. Even so,

the pipeline’s modular design allows for better components to be substituted over time to increase

performance without needing to re-train or re-implement other algorithms. Finally, a strict focus on

individual component accuracy misses the point that poor automation is a more significant barrier

to large-scale population censusing than poor detection performance or completeness.



CHAPTER 4

OVERVIEW OF PHOTOGRAPHIC CENSUSING

Animal population monitoring is hard to do at large scales because it is immensely laborious for

ecologists. It is often too overwhelming and tedious to track hundreds – let alone thousands – of

animals with invasive tools like ear tagging and GPS collars. Furthermore, historical methods

like aerial surveys and hand-based counts lack the ability to recognize individual animals over

time, severely limiting the potential to establish ecological trends. Knowing an animal population

through the majority of its members, in contrast, provides crucial insight. For example, ecologists

gain a more intimate and timely understanding of a species’ health when they can determine life

expectancy, visualize migration patterns, and quickly measure the effectiveness of conservation

policy. A comprehensive database of animal IDs is, therefore, a powerful tool for monitoring an

endangered population, and the question is, “what is the best way to build one?” Unfortunately,

a large database of IDs cannot be built by hand because the amount of work required to curate it

is too prohibitive as the database grows. What is needed for sustainable population monitoring is

automation. Any end-to-end solution to the problem of large-scale population monitoring must

fundamentally be built around maximizing the completeness of an ID database while minimizing

the amount of human effort needed to create it.

This chapter introduces the concept of photographic censusing19, a comprehensive and

automated procedure for large-scale animal population monitoring. The methodology uses digital

images of animals as input, machine learning algorithms to automate their analysis, an ID database

to track sightings of individual animals, and a management algorithm to control when human

interaction is needed. Furthermore, photographic censusing is intended to be feasible for resource-

strapped organizations to implement for large species and migratory ranges. As we will see,

photographic censusing has been experimentally validated in situ on a wild animal population

with thousands of individual members across 25,000 square kilometers. Photographic censusing

is also intended to be used with open populations, with some animals only seen once (what we

will call “singletons”) and others seen many times (“multitons”). This chapter begins with an

overview of photographic censusing and discusses real-world challenges and considerations when

high degrees of automation are needed. Next, an enumerated list of the required machine learning

19As a process that is powered by computer vision algorithms, animal population censusing was first explored in the
author’s master’s thesis [2]. It is formally proposed and described here as a self-contained and complete methodology.

92
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and management algorithms is provided, and a mathematical framework is introduced for estimating

the size of an animal population when automated components are involved. Lastly, a new evaluation

database is proposed containing hundreds of animal IDs with multiple sightings, some over two

years, for the endangered Grévy’s zebra species in Kenya.

4.1 Problem Description

Photographic censusing produces a population estimate by performing a sight-resight study

(see Section 2.3.2.1). A sight-resight study is based on the sampling statistics of capture-mark-

recapture and, as a result, is constructed from an initial collection of photographs followed by

a second, independent, and comparable collection. The image data needed for photographic

censusing is gathered through a photographic censusing rally, an event where volunteer “citizen

scientist” photographers are trained to take pictures of the desired species and tasked to cover its

residential area for two back-to-back days. The question is, given a large collection of images taken

during a two-day censusing rally, “how many individuals are in the population?” Photographic

censusing answers this question by building a comprehensive database of animal IDs with the help of

automated tools. The ID database is curated by comparing different pairs of sightings to determine

which show the same animal or not. The process concludes when a management algorithm is

satisfied with the level of redundancy and consistency for all IDs in the database. By comparing

the ratio of animal IDs seen on day 1, seen on day 2, and seen on both days, the total number of

animals in the population is estimated. This process can rely heavily on human decision-making,

so the overall significance of photographic censusing as a solution is fundamentally tied to how

automatically it can produce a reliable database of animal IDs.

Since automation is crucial, we need to discuss what kinds of machine learning algorithms are

needed and consider how they may fail, resulting in a need for human involvement. The methodology

of photographic censusing is built on analyzing digital images, and, therefore, it is appropriate

that computer vision algorithms should be considered primarily for its automation needs. For

example, the detection pipeline (discussed in Chapter 3) is used to automatically filter the collected

images into a set of relevant animal sightings. As we will see, however, additional computer

vision algorithms are also needed to identify potential matches and verify pairs of annotations.

Furthermore, computer vision algorithms are imperfect, and curating an ID database requires human

effort to fill the accuracy gap. As such, there are three specific and systemic challenges encountered

during automated ID curation that we must discuss because they drastically increase the need for
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human interaction: 1) the proper selection of annotations from the detection pipeline, 2) the correct

matching of the intended animals within annotations, and 3) the managing of ID curation and

deciding when a human needs to do additional ID verification. Unfortunately, the amount of human

effort required can be substantial when poor-performing computer vision algorithms are used and

these sources of error are not appropriately addressed. The following sub-sections describe these

problems and explain why they dramatically hinder the automation – and therefore the general

usefulness – of photographic censusing.

4.1.1 Which Annotations to Select: Comparable Annotations

The first problem we must consider is the selection of which annotations to use for photo-

graphic censusing. To do this, we need to understand how annotations are actually used: annotations

are automatically ranked to find potential matches, and algorithms and humans verify the resulting

pairs of annotations. With this in mind, what can we conclude when a given pair of two annotations

fail to match? Does the pair indeed show two different animals? Not necessarily; there are three

distinct possibilities for why two annotations may not match, either 1) the detection pipeline failed

to filter at least one of the annotations properly (e.g., poor quality or incompatible viewpoints),

2) the annotations were appropriately filtered and actually showed different animals, or 3) the

annotations were filtered correctly but are not comparable. Therefore, we can only conclude that

two annotations truly show different animals if they are both comparable, showing the same areas of

distinguishing information that can be compared and contrasted. Since matching is akin to “marking”

an animal in a sight-resight study, it is essential to approach and define comparability as a distinct

property of an individual annotation. If both annotations in a pair are comparable, a confident and

repeatable decision should be possible given enough time to review the pair, regardless of the skill

of a particular reviewer. Furthermore, by not considering comparability, we are potentially allowing

ambiguity to enter the ID database.

We would prefer to construct an automated photographic census with annotations guaranteed

to be comparable for all potential pairings. By definition, an annotation is comparable if it provides

enough visual information to a reviewer such that a “same animal” or “different animals” decision

is always possible. To provide a counter-example, an incomparable match can be seen in Figure 4.1,

where the two annotations are exceedingly difficult to compare and would likely be set aside for

human review. The distinction of needing “enough” visual information to feel comfortable can be

challenging to implement in practice. Finding the right combination of required visual features is
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Figure 4.1: An example images of an incomparable match, where the background animals
are being compared but a decision cannot be reliably made. The distinctive visual
regions that are normally used for verification (the purple oval regions) are both
occluded.
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subjective and is unfortunately unique for each species. For example, the identifying information

for a Grévy’s zebra is often concentrated in the back hip region and the shoulder chevron at the top

of the front leg (e.g., the purple oval regions in Figure 4.1). Humans commonly use these two areas

to verify if a pair of Grévy’s zebra annotations are the same or not, and not being able to compare or

contrast these regions makes the match much more difficult (or impossible) to decide. This dynamic

suggests a trade-off exists between 1) a complete review of all the detected annotations and 2) the

desire to increase the automation of the photographic census.

Unfortunately, not all annotations created by the detection pipeline (and properly filtered for

relevant species and viewpoints) are guaranteed to be comparable. The need for comparability will

be addressed in Chapter 5 where the notion of a Census Annotation (CA)20 is introduced and added

as a new animal detection component. The discussion there will demonstrate that photographic

censusing is significantly more automated and maintains the same level of accuracy in its population

estimate when only Census Annotations are used.

4.1.2 Systematic Ranking Errors: Incidental Matching

Even with a detection pipeline that can accurately find, label, and identify relevant sightings

(and filtering methods like Census Annotation to discern the comparable annotations), it is still

possible to have considerable problems during automated ID curation. The second systemic error

we must consider happens when a ranking algorithm (see Section 2.3.1) confidently matches

two annotations that do not show the same animal. This problem results in errors in the ID

database because two distinct animal IDs are then incorrectly and automatically merged. This

problem is called “incidental matching’. In order to rely on high amounts of automation during

photographic censusing, we need to examine the two most common incidental matching scenarios,

photobombs [13] and scenery matches, and review why they happen.

A photobomb happens when the primary animal in one annotation matches a non-primary

animal in the other annotation. An example of a photobomb can be seen in Figure 4.2 (left), where

the primary animals shown in the middle of each annotation are not being appropriately matched

(highlighted regions provided by HotSpotter [261]). Photobombs are typical for herding species

because animals that are routinely seen together have an increased likelihood of being seen in the

background of other images. Further, a special case of photobombs can also occur between mothers

20The motivation of CA is slightly different from Annotation of Interest because comparability does not make
an image-level determination and focuses entirely on the annotation. For example, while an AoI may show enough
information to identify it most of the time, that does not guarantee that it will be universally comparable all of the time.
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Figure 4.2: Example images of two types of photobombs taken during the GGR-18. A typical
photobomb (left) happens when the primary animal in the top sighting has
matches against itself in the bottom annotation, but it is not the primary sighting
in that annotation. A special case of photobombs, involving splitting mothers and
foals (right) in the same image, is particularly challenging to automated ID for
herding social species.

and foals, called “mother-foal photobombs”. Young animals often stay close to their mothers

for protection [375], which means their annotations can significantly overlap and be accidentally

matched. Figure 4.2 (right) gives an example of a mother-foal photobomb for Grévy’s Zebra during

the Great Grévy’s Rally (GGR) 2018. The demographics for the GGR 2016 census [356] report that

approximately 10% of the zebras in the population were infants (0-12 months of age), meaning that

these types of photobombs will happen at a non-trivial rate and must be treated as a distinct error

mode.

Scenery matches, in contrast, are distinct from photobombs because they are based on

matching the surrounding background (i.e., trees, shrubs). One of the most common sources of

incidental matching – especially scenery matches – is annotations taken within seconds of each

other; these “near-duplicate” annotations can strongly match because they capture the same scene

with significant background overlap. Scenery matches can also occur when multiple photos are

taken from the same spot, although not necessarily on the same day [115]. By their very nature

as stationary cameras, camera traps have a significant potential for scenery matching and must

be considered carefully during a photographic census. Figure 4.3 gives an example of a scenery
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Figure 4.3: An example image of a scenery match taken during the GGR-18. The
background scene in this match strongly corresponds while the two primary
animals are clearly different individuals. Semantic segmentation could provide a
background mask but would also require novel ground-truth segmentation data
for new species.
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match for a reticulated giraffe during the GGR 2018 censusing event. By looking carefully at the

giraffe, it is evident that the animals are not the same. However, robust matching is happening by

the texture-based algorithm on the background trees and bushes. The result is that this negative

“different animal” match will have a strong positive score, complicating our ability to set automatic

decision thresholds for pairs in general.

The Census Annotation concept is extended in Chapter 5 to add Census Annotation Regions

(CA-R) to avoid incidental matching. A Census Annotation Region is a smaller, more focused box

within a CA that crops out irrelevant background information. This new bounding box drastically

limits the number of overlapping animals and the amount of background seen within the annotation.

The benefit of performing a photographic census on CA-Rs, as we will see, is that it presents highly

comparable (and therefore easier) annotation pairs to the automated verifier and vastly reduces the

need for human verification to fix bad decisions.

4.1.3 Managing the Decision Process: Animal ID Curation

Now that we have identified the need to filter annotations appropriately and limit the impact

of incidental matching, we need to examine the third and final way substantial amounts of human

effort are introduced. Let us consider a fully automated process for building an ID database that uses

1) comparable annotations as input, 2) a ranking algorithm to produce potential matches for each

annotation, and 3) a verification algorithm to decide if each match is correct. The process assigns the

same ID to annotation pairs deemed correct and leaves unmatched annotations as different animals.

The immediate question is, “is this process sufficient to produce an accurate database of animal

IDs?” Consider what would happen when the verifier makes a mistake and incorrectly decides that

one of the pairs is the same animal when, in fact, it is not. The IDs for those two animals would

be merged, and the population estimate would decrease by one (under-counting). The second type

of error in the ID process occurs in one of two ways: if a verifier or human fails to decide “same

animal” for an actual match or if the ranking fails to propose the match in the first place. In this

event, the ID for one animal is split across two IDs in the database, and the population estimate

would increase by one (over-counting).

The natural way to avoid this problem is to rely on human decision-making instead of the

automatic algorithm when there is any chance of error. Unfortunately, this solution requires many

human decisions – defeating the purpose of automation – and, as we will see, still does not eliminate

all chances of error. What is needed is an overarching control algorithm that 1) goes beyond the
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matching pairs that were initially suggested by a ranking algorithm, 2) works to find potential

inconsistencies in the match decisions, and 3) resolves issues – either fixing inconsistencies or

reinforcing recent decisions – by seeking additional information from an algorithm or human. This

algorithm must manage when automated or human decisions are needed to curate a consistent

database of animal IDs, and its implementation influences how much human decision-making is

required overall.

4.1.4 Summary

In summary, these three challenges are the most significant theoretical barriers to automated

photographic censusing. The underlying problem is that automated computer vision algorithms and

even human reviewers make mistakes. A significant impact of these mistakes – difficult-to-compare

annotations, incidental matching, and matching ambiguities – is the increased need for human

effort to generate a reliable database of IDs. It is, therefore, appropriate to use human effort as a

quantitative metric to compare different censusing configurations. Therefore, the amount of work

done by humans will be the basis for experiments in Chapter 5. We now turn our attention to

describing the components required to perform a photographic census and discuss the errors they

introduce in the final population estimate. The introduced components are assembled at the end of

the chapter to build a new evaluation database for Grévy’s zebra IDs.

4.2 Components of Animal ID Curation

The task of large-scale and automated photographic animal censusing is complex. The

above problem description has established that the solution needs multiple components to work

successfully as an end-to-end process. Those components include:

1. a detection pipeline that finds relevant sightings of animals in images and ensures that all of

the resulting annotations are comparable,

2. a ranking algorithm that matches a query annotation against a database of annotations and

generates a prioritized ranked list of the most likely pairs that show the same animal,

3. a decision management algorithm that looks for ambiguities and inconsistencies in the

database and seeks additional pair decisions from a verification algorithm or human reviewer,
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4. a verification algorithm that automatically predicts if two annotations are the same animal or

not,

5. a human-in-the-loop reviewer that is tasked by the decision management algorithm to litigate

hard pairs when the results of the automated verification algorithm are insufficient, and

6. a population estimator that uses the distribution of sightings and resightings on back-to-back

days to estimate the total number of animals in a surveyed population.

This dissertation addresses the following aspects of this problem: 1) establishing a problem defini-

tion, 2) contributing the detection pipeline, 3) proposing a solution to the annotation comparability

problem, 4) minimizing the incidental matching problem, 5) building an experimental dataset, 6)

configuring, training, building, and validating algorithms and the whole system, and 7) demonstrat-

ing its effectiveness on the GGR-16 and GGR-18 censusing events (Chapter 6). The evaluation

employs prior and ongoing work for ranking (HotSpotter [261] and PIE [263]), pair-wise verification

(VAMP [13] and PIE [263]), and decision-making during ID curation (Graph ID [13] and LCA).

Of particular importance in this work is the first experimental evaluation of the LCA algorithm,

demonstrating that it is a successful animal ID curation algorithm. The remaining discussion in

this section will review each of the components listed above and outline the errors that each may

introduce in the population estimate.

4.2.1 Detection Pipeline

The detection pipeline, as discussed in Chapter 3, functions in part to control which annota-

tions are considered for photographic censusing. By its very design, the output of the detector offers

a filtered view to the rest of the photographic censusing procedure because it only allows relevant

annotations through to ID. By operating on the reasonable assumption that the input photographs

did not capture all of the individuals in a large population, the reality is that photographic censusing

must be designed to estimate how many animals were not seen at all. When an animal is not

cataloged, it means that 1) the animal was not seen by any photographer or 2) the animal was seen

by a photographer but the detection pipeline did not create an annotation for it. Both cases are

handled similarly by the population estimator when the chance of a detection error is independent

across images and uniformly distributed. For example, we know that the YOLO localizer can

perform poorly on small annotations. If the analysis considers only Annotations of Interest, this

source of error is nullified because useful and small AoIs are rare. This detail means that the
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estimator implicitly controls the error introduced by false-negative detections (missed detections) in

the final population estimate.

The more worrying case is when the detection pipeline produces an annotation that it should

not have let through. These “spurious detections” may have various issues; they could have a poor

bounding box, be the wrong species, show an incomparable viewpoint, be too blurry for matching,

be occluded in the background, or are otherwise not identifiable. These annotations are less likely

to be successfully matched by an ID ranking algorithm and are therefore more likely added to

the animal ID database as singletons. The result is that false positives from detection can bias

the number of animals in the population estimate higher. In practice, these errors are easy to find

by reviewing all of the annotation singleton (or encounter singleton) IDs in the database. For a

little extra human effort to do a final check, this source of error can be mitigated by discarding

inappropriate singleton annotations during ID curation.

4.2.2 Ranking Algorithm

After comparable annotations are selected for use in the photographic census, a ranking

algorithm is needed to prioritize which pairs of annotations should be reviewed. The ranking process

is a crucial step because an exhaustive review of all quadratic pairs is not feasible. An established

ranking algorithm discussed and used in this dissertation is the HotSpotter [261] algorithm, which

finds texture-based features on the body of an animal and uses a nearest neighbor search database

to create a list of ranked matches. The algorithm works well as a general retrieval and ranking

method and produces numerical scores for each pair in their ranked lists. These scores, however, are

unbounded and do not have a good separation between positive “same animal” pairs and negative

“different animal” pairs, setting up the need for an independent verifier (discussed next). There are

also new types of ranking algorithms, like Pose Invariant Embeddings (PIE) [263], that use deep

learning and specialized training methods (i.e., triplet loss) to learn a feature embedding for ID.

These methods are often faster, more flexible, and more accurate compared to their hand-engineered

counterparts. The challenge is that these feature embedding approaches can require significant

amounts of ground-truth ID data to train, which presents a problem for photographic censusing as

an end-to-end process for new animal species. The crucial insight with ranking algorithms is that

there needs to be an awareness of the capabilities of traditional computer vision algorithms that do

not rely on deep learning and an acknowledgment that they are an asset to bootstrapping.

When using ranking algorithms, the most elusive source of error is a “missed match” (i.e., a
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recall failure). The retrieval rates for a ranking algorithm can be estimated using small databases

because they are easier to verify thoroughly. It becomes challenging, however, to measure this value

for larger databases because a ranking algorithm is often needed to build the database in the first

place. Special care is needed, therefore, to ensure that an animal ID database is sufficiently curated

with multiple ranking and verification algorithms. The second type of error from a matching failure

is a “spurious match”, which is most often caused by incidental matching. As we will see, the use of

Census Annotation Regions and a decision management algorithm helps to drive this rate towards

zero during ID curation. A final consideration is that some animals may be photographed multiple

times at the same general time and place – considered a single “encounter” of that animal – and the

ranking algorithm needs to support both short-term (intra-encounter) and long-term (inter-encounter)

matching. The general expectation is that the rate of accurate matching within an encounter is

expected to be higher than between encounters.

4.2.3 Decision Management Algorithm

The management algorithm leveraged in most of this work is called the Graph ID algorithm

by Crall [13]. The Graph ID algorithm is a linear curation process that enforces an explicit level of

decision redundancy within animal IDs (positive redundancy) and between animal IDs (negative

redundancy). The Graph ID algorithm is easy to understand but has the downside that it is too

aggressive at enforcing consistency. For example, when an inconsistency is found, the automated

verifier is disabled, and manual decision-making by humans is needed to find and fix the issue.

Furthermore, the algorithm only uses automated verifiers up to a pre-defined threshold (generally

a false-positive rate of 1%). In practice, this means that most of the ID verification decisions are

performed by humans. A second decision management algorithm called LCA (Local Clusters and

their Alternatives) discards the need for explicit redundancy and instead measures an animal ID’s

stability relative to an alternative clustering of annotations. LCA intentionally delays human effort

as long as possible and uses an automated verifier more effectively by weighting its decisions into a

probabilistic vote (compared to a binary decision threshold with Graph ID). The result is that LCA

requires much less human effort to resolve inconsistencies and curate the database of animal IDs.

The goal of photographic censusing is to produce a consistent database of animal IDs such that

no additional splits or merges need to occur. However, it is significantly more likely to have a silent

merge case between the two possible cases because it cannot be identified without some positive

signal from a ranking algorithm. On the other hand, missed splits can be identified more easily



104

by analyzing the state of the database and ensuring each animal ID is sufficiently reviewed. Thus,

any bias introduced in the final population estimate is ultimately a matter of how comprehensively

the algorithm reinforces the animal IDs, and by default, the estimate should be treated as an upper

bound. For example, the decision management algorithm can include a method to “densify” small

animal IDs with extra decisions, which helps identify the need for potential ID splits.

4.2.4 Verification Algorithm

The purpose of an automated verifier is to review pairs suggested by the decision management

algorithm, and it functions as an accurate stand-in for a human reviewer. The Verification Algorithm

for Match Probabilities (VAMP) [13] approach was the first verification algorithm developed for use

in automated photographic censusing21. VAMP is implemented as a random forest classifier that

uses hand-engineered features to compare two annotations and produces a probabilistic decision of

“same animal” or “different animals”. The algorithm is noticeably fast and, while it does require

ID training data, it can be trained from a relatively small database due to a mining procedure. The

second type of verification algorithm can be constructed with the same triplet-loss embedding

networks used for ranking. Since the embedding for two annotations is trained to be directly

compared in embedding space, a distance between two annotations can also be calculated and used

for verification. Like with ranking, however, the PIE algorithm needs an extensive database to train

effectively; VAMP, in contrast, can work as a bootstrapable verification algorithm before a critical

mass of ground-truth IDs can be collected.

The automated verifier’s accuracy – and the separability of its scores – directly affects how

automated photographic censusing can be. Furthermore, any error this component introduces ends

up translating directly into the need for more human effort to find and fix inconsistencies in the

animal ID database, and its failures should have a minimal impact on the final estimate.

4.2.5 Human-in-the-Loop Reviewer

Likewise, human reviewers are not perfect and make mistakes. Each mistake made by a

human requires the decision management algorithm to request more overall work to find and fix the

database issues it causes, just as when the automated verifier makes an incorrect decision. Making

the matter worse, the pairs given to humans for review are not consistent in their difficulty. Some

21The Graph ID algorithm, using the detection pipeline to find comparable annotations along with HotSpotter as its
ranking algorithm and VAMP as its verifier, was used as the original algorithmic tool-chain for the Great Grévy’s Rally
(GGR), as discussed in Chapter 6
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pairs are easy to compare and contrast and, as a result, are faster to review. However, when a pair is

complex or shows two annotations that are borderline comparable, then the human reviewer spends

significantly more time making a decision. Since our goal is to reduce overall human effort, the most

obvious way to achieve this is to automate decision-making with verification algorithms. However,

an additional way to reduce effort is to focus on annotation pairs that are easy and fast for humans to

review. The error introduced by human reviewers, like the automated verifier, also converts to more

overall work during ID curation. This feature of photographic censusing is convenient because it

suggests that a comprehensive pairwise review attenuates the effects of human mistakes in the final

population estimate.

It is important to note that if humans cannot accurately verify the results of a ranking algorithm,

then that algorithm or species is not compatible with photographic censusing. Further, a person must

be able to manually filter out annotations that are of undesired species, of incompatible viewpoints,

of incomprehensible quality, and are ultimately incomparable because all of these are the actions

needed to bootstrap the detection pipeline and curate IDs in the first place.

4.2.6 Population Size Estimator

Lastly, we need to highlight that an animal ID database does not provide a population estimate

by itself. The animal population is likely open, and the number of known animals in the database

does not tell us anything about many unknown animals still remain in the population. Put simply,

how do we know if an ID database is complete and has 100% coverage? Any animal database for

an open population will have the possibility of animals that have never been cataloged. What is

needed is a way to use a curated and consistent animal ID database to estimate the total number of

animals in the population. The sampling method used by sight-resight studies, the Lincoln-Petersen

estimator [376], is a relatively simple ratio calculation. Its simplicity has made it a popular method

by ecologists for baseline studies, and it is used for photographic censusing because it allows for

more direct comparisons with historical estimates. One advantage of large-scale photographic

censusing is that it is designed to be a drop-in replacement for past, more limited surveys.

The Lincoln-Petersen (LP) estimator can be extended for our use with machine learning

algorithms. One of the advantages of machine learning algorithms is that their error rates can

be experimentally measured during validation, and the effects of automatic failures in the final

population estimate can be considered. The various sources of error discussed in this chapter

are limited to specific scenarios around missing and making spurious detections, failing to recall
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matches during ID ranking, and incidentally matching annotations. An updated version of the LP

estimator is proposed in the next section that adds new error terms and discusses their impact on the

final population estimate.

4.3 Automated Lincoln-Petersen Estimator

While the Lincoln-Petersen estimator is well established and has been expanded since its

formation, it has not been amended to add explicit terms for automated machine learning errors.

This section provides a mathematical framework for estimating an animal population using the

automated tools and concepts proposed above for photographic censusing. To provide a quick

overview: the Lincoln-Petersen estimator and confidence interval (CI) can be modified to add

four high-level error rates: missed detections, spurious detections, missed matching, and spurious

matching. The estimated rate of missing a match (recall failure) and incorrectly matching two

animals together (incidental matching) impact the population estimate the most. In contrast, the rate

of missing detections has the most significant impact on confidence interval. One of the convenient

takeaways is that aggressive annotation filtering (artificially high detection miss rate) should have

little impact on the actual predicted estimate. Further, spurious detections are easy to identify and

eliminate during ID curation, ideally a rate of zero in practice by reviewing singletons. Likewise,

when the ranking algorithm fails to match at a higher rate than it makes spurious matches, then the

population estimate will, as expected, be biased high, and the CI will grow. For readers who wish to

skip the details of its derivation, the final resulting Equation 4.21 is used in Chapter 6 to produce a

population estimate for Grévy’s zebra in Kenya. Section 4.4 continues the discussion by describing

an evaluation dataset for Census Annotations in Chapter 5.

4.3.1 Assumptions

The population estimate applies to a fixed time window, where images of animals are taken

on day 1 and again for a subsequent, consecutive day 2. The number of animals sighted on each day

and the number sighted on both days (resights) provides the foundation for a sight-resight study.

However, for this process to work accurately, it must rely on a set of assumptions about the data

collection and underlying animal detection and identification algorithms.

1. Equal Sightability - The animal population is considered closed (geographically and de-

mographically) during the two days of the census; no significant immigrations, emigrations,
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births, or deaths should occur, and the actual number of animals is expected not to fluctuate

during the survey period [377].

2. Passive Influence - Any given animal, or any given group of animals, is equally likely to be

sighted throughout any given day, and across both days, of the census; seeing an animal does

not affect its likelihood of being seen later that day or resighted on day 2.

3. Encounter Coverage - When an animal or a group of animals is encountered, exactly one

comparable annotation is captured by the photographer(s); this assumption requires that if a

photographer encounters an animal, then it cannot be skipped over; another way to phrase

this is matching within an encounter of comparable sightings is trivial and assumed to have

perfect recall.

4. Population Coverage - The total number of animal sightings on day 1, day 2, and the number

of resightings on each day and between both days are non-trivial (i.e., not zero or close to

zero); the assumption specifies that the scale of data collection is sufficiently large and that

the ID database offers meaningful and uniform coverage over the animal population.

5. Comparable Sightings - The animal species must be comparable; any given pair of annota-

tions must be verifiable by a human (with high confidence and accuracy) to be either a) same

individual or b) different individuals.

6. Match Retrieval - The probability of the ranking algorithm failing to retrieve (recall) a

correct “same animal” match between encounters is assumed to be non-zero but also constant

throughout the census, regardless of the size of the underlying animal ID database.

These assumptions should be realized through a careful design of the data collection procedure,

which will be the focus of Chapter 6 and photographic censusing rallies. For example, the data

collection process should ensure that the census area is comprehensive and covers the known regions

that contain the resident population.

4.3.2 Animal Detection

A photographic census is a process where images are captured in a two-day collection and

processed by an automated system. The first step of this automated processing is detection, and

it places a box and species label around each animal in the collected images. Let α ∈ ¶1, 2♢
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signify either the 1st or 2nd day of the census, where each has a set of images that can be treated

independently. For each day, there are the following:

sα — total number of animal sightings of the desired species

captured by the images

s′

α — total number of comparable animals within sα, where s′

α ≤ sα

dα — total number of animal detections of the desired

species derived from the images

Since we only care about the animal sightings that are visually comparable, we can set the expected

number of annotations aα to be:

aα = (1 − pdm(θ)) ∗ s′

α + pds(θ) ∗ dα

where

pdm(θ) — probability of missing an animal detection, given θ

pds(θ) — probability of adding a spurious, incomparable detection, given θ

θ — detection parameter controlling the level of annotation filtering

(4.1)

The detection probabilities above aggregate the chances of making a detection error into a single

value regardless of the reason. The reasons for making a detection error vary and include factors

like qualitative properties of the image (e.g., illumination, sharpness) and semantic properties (e.g.,

an animal is truncated, occluded, or of a commonly confused, visually similar species) but can be

estimated for an entire dataset. The variable θ represents the collection of parameters that control the

filtering level applied on the annotations passed to ID. These parameters influence the error rates of

the detector because – for example – in focus, clear, un-occluded, and well-lit annotations are easier

to find, and the system will make more mistakes as poorer annotations are included. Furthermore,

the error rates must use comparable annotations as the frame of reference for correct detections.

4.3.3 Individual Identification on Day 1 and 2

Provided with the number of comparable annotations aα for day α, we need to estimate

the number of unique individuals nα that was sighted on that day. The number of individuals
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nα ≤ aα but, in general, we expect nα << aα to be the case for a large-scale photographic census

with sufficient coverage. An animal’s average number of resightings is expected to be non-trivial

and is further guaranteed by assumption 4. Therefore we need a general matching algorithm that

can prioritize the potential


aα

2



pairs of annotations for analysis and decide if the annotations are

either a) the same individual or b) different individuals. All pairwise decisions are guaranteed to

be decidable through assumption 5 because an incomparable pair cannot exist. Furthermore, any

incomparable pair that is found needs to be manually reviewed to discard the offending annotation(s).

This manual review means that each of the decisions has a chance of being decided correctly or

incorrectly. An incorrect match could happen by either missing a match (failing to associate two

annotations of the same individual correctly) or making a spurious match (failing to distinguish two

annotations of a different individual correctly).

In practice, however, it can be too complex to estimate the pairwise error probabilities

of missing a given match. The reasons for this are varied and are often a consequence of the

implementation details of the matching algorithm. For example, the naïve search space for the

match pairs is O(n2), but a given matching algorithm may choose to perform an approximated

search of this space on visually similar neighbors, meaning not all pairs will be explicitly reviewed.

Thus, there is a probability that the matching algorithm may fail to include a correct pair in the

decision process. However, this probability is complex and may not be the only factor in missing a

particular correct match. Therefore, we would prefer to contextualize the matching problem not in

terms of a pairwise probability of matching failure but rather in terms of a global probability of

matching failure, averaging the various effects and relying on a general performance validation of

the algorithm. Further, we expect that these rates of ID failure are constant and do not depend on

the size of the search database (assumption 6). Therefore, we set:

nα = n′

α ∗ (1 + pmm(θ) − pms(θ))

where

n′

α — actual number of individuals captured by aα

pmm(θ) — probability of missing a match, given θ

pms(θ) — probability of making a spurious match, given θ

(4.2)

We would prefer, however, to define n′

α in terms of aα. Let us assume that there exists some kα ∈ R
+
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which represents the average number of annotations per individual on day α, where:

n′

α =


1

kα

∗ aα

⌋

(4.3)

Assumption 3 guarantees that when an individual photographer (or a group of photographers in the

same survey vehicle) encounters a single animal (or a group of animals), then the photographer(s)

act in unison as a single oracle. The “photographic oracle” is expected to capture exactly one

comparable annotation for every individual in the encounter, and there will be multiple independent

oracles during a photographic census. This assumption is exceedingly strong about aα and places

an unrealistic expectation on the level of skill and coordination between the photographers. Let us

consider a relaxation for the moment where more than one annotation for an animal was allowed

to be collected but still required for every animal. This second requirement becomes easier to

meet when there are multiple photographers in the same survey vehicle. This condition also would

mean multiple annotations were taken at the same general time and place for the same animal. Let

a′

α represent the total number of comparable annotations that were collected before any sort of

de-duplication is performed for each encounter, where aα ≤ a′

α.

The difference between aα and a′

α is that the only way to get a repeat annotation of an

individual with aα is by photographing it at a different encounter. In other words, the value for kα is

equal to the average number of encounters an animal is seen on day α of the census. Each encounter

is limited to a fixed spatio-temporal context with a unique duration, interval, and geographic area;

the number of individuals seen during each encounter will also vary. Each encounter, however, is a

specific event and occurs independently of all other encounters. Assumptions 1 and 2 guarantee that

the movement and behavior of the animals are truly independent of the ongoings of the census and

that the chance of sightings is uniform. We can also reason that the chance a given group of animals

is encountered by two oracles simultaneously is practically zero. However, in any such event,

the oracles are simply merged for that single encounter. Since there is no real-time coordination

between photographic oracles (which is allowed to encourage better coverage of the survey area),

then the process of any oracle encountering any given animal can be modeled as a Poisson random

process. This process has an expected value k′

α for the average number of annotations per individual

and is conditioned on day α because the averages can differ day-by-day.
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Thus, the expected number of annotations per animal is defined as:

⌊k′

α ∗ n′

α⌋ = a′

α

n′

α =

⌊

1

k′

α

∗ a′

α

⌋

where

k′

α ∈ R
+

and

k′

α ≥ kα

(4.4)

What is needed is to bridge the gap between Equations (4.3) and (4.4) by substituting k′

α and a′

α

with their de-duplicated counterparts. In order to do this, the data collection procedure needs to

ensure that 1) the average number of annotations per animal is uniform within an encounter and

2) that the average number of annotations per animal is uniform throughout the day. A real-world

example of collection bias is when an encountered group of animals contains an infant. We can

reasonably expect that the number of photographs for an infant will be biased arbitrarily high

compared to an adult in the same group. The reason is simple: baby animals are cute. This effect

can also be seen when an individual photographer encounters a new species and wants to capture

many images of it. Another anticipated source of bias is that the chance of taking a picture for

a given individual is not consistent throughout the day, in a phenomenon called “photographer

fatigue”. An initial excitement defines this fatigue at the start of the census rally, resulting in more

images taken during the first couple of encounters. As the day progresses, the photographer becomes

tired, and the average number of annotations per animal decreases.

Three important factors can help control for these kinds of biases. The first is to have multiple

photographers within the same survey vehicle. Having multiple cameras in a car will average out

the effect of a single photographer and make their unified photographic oracle more uniform in its

behavior. The second is that the photographers should be trained specifically on these two effects

(excitement and fatigue) and be encouraged to act consistently throughout the day. The third is

that the encounter should contain at least one comparable annotation for each encountered animal

regardless of its underlying distribution of duplicate sightings. Assumption 3 specifies that the

recall rate of ID ranking is 100% within an encounter, which is reasonable because a much smaller
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context is being compared for duplicates (not across the entire census, but just at one time and

space). Furthermore, the chance of missing a match or making a spurious match should be the same

as the chance of making an error between encounters, meaning the terms can be safely substituted.

Combining Equations (4.1), (4.2), and (4.3) gives us the estimated number of individuals on day α

as a function of the number of annotations:

nα = n′

α ∗ (1 + pmm(θ) − pms(θ))

=


1

kα

∗ aα

⌋

∗ (1 + pmm(θ) − pms(θ))

=


1

kα

∗ [(1 − pdm(θ)) ∗ s′

α + pds(θ) ∗ dα] ∗ (1 + pmm(θ) − pms(θ))
⌋

(4.5)

Equation (4.5) relies on several error probabilities that can be estimated for the various automated

components. Notably, none of them are conditioned on α, implying that the performance of a given

algorithm does not depend on exactly when an image was captured. We can safely assume this to

be the case because the rally has fixed start and end times and (at least for the GZGC and GGR)

occurs during the same daytime hours. The equation does, unfortunately, rely on knowing the actual

number for s′

α. Humans could manually review the images to obtain their exact values, but a random

sampling of all collected should be sufficient to estimate it. Given a reviewed subset (e.g., 10%)

of the complete set of comparable sightings (s′

α annotations) and the total number of detections

(dα), each of the error probabilities can be estimated. Furthermore, the estimated rate of missing a

detection can also be re-parameterized on dα so that the detector error rates are directly comparable

and are calculated as a function of the detector’s output. In other words, for each correct bounding

box that is predicted, we can calculate the rate a second box for a missed comparable annotation

should have been predicted (on average). Thus, the estimated miss detection rate can be re-defined

such that:

(1 − pdm(θ)) ∗ s′

α ≈ (1 − p̂dm(θ)) ∗ dα (4.6)

Reformulating Equation (4.5) with the respective substitutions for the estimated error probabilities,

and using Equation (4.6), results in:
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nα =


1

kα

∗ [(1 − pdm(θ)) ∗ s′

α + pds(θ) ∗ dα] ∗ (1 + pmm(θ) − pms(θ))
⌋

≈

⌊

dα

k̂α

∗ (1 − p̂dm(θ) + p̂ds(θ)) ∗ (1 + p̂mm(θ) − p̂ms(θ))

⌋

≈ ⌊n̂α ∗ (1 − p̂dm(θ) + p̂ds(θ)) ∗ (1 + p̂mm(θ) − p̂ms(θ))⌋

where

n̂α — number of animals in the ID database seen on day α

(4.7)

4.3.4 Individual Identification Between Days 1 and 2

Given the number of individuals seen on day 1 and day 2, represented by n1 and n2 from

Equation (4.7), we now need to model the number of individuals nB that were seen on both days.

Following the same logic as Equation (4.5), we let:

nB = n′

B ∗ (1 + pmm(θ) − pms(θ))

=


1

kB

∗ aB

⌋

∗ (1 + pmm(θ) − pms(θ))
(4.8)

We need to recall Equation (4.1), however, to consider the total number of annotations that

are involved. Before, when considering only one day at a time, we could estimate the probability of

missing the detection for a given day as a single event. The value for aB, however, is based on a

joint probability of a successful detection (and successful comparable decision) in both day 1 and in

day 2. Luckily, these joint probabilities are independent and can be combined. Furthermore, it is

incredibly unlikely to match spurious detections across days (regardless of θ) and it can be assumed

that pds(θ) = 0 for resightings. The value for aB is therefore defined as:

aB = (s′

1 + s′

2) ∗ Prob(detected on day 1 ∩ detected on day 2)

= (s′

1 + s′

2) ∗ Prob(detected on day 1) ∗ Prob(detected on day 2)

= (s′

1 + s′

2) ∗ (1 − pdm(θ))2

(4.9)

Substituting Equation (4.9) into Equation (4.8), and applying the same substitutions used in (4.5),

results in:
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nB =


1

kB

∗ aB

⌋

∗ (1 + pmm(θ) − pms(θ))

≈

⌊

d1 + d2

k̂B

∗ (1 − p̂dm(θ))2 ∗ (1 + p̂mm(θ) − p̂ms(θ))

⌋

≈
⌊

n̂B ∗ (1 − p̂dm(θ))2 ∗ (1 + p̂mm(θ) − p̂ms(θ))
⌋

where

n̂B — number of animals in the ID database seen on both days

(4.10)

4.3.5 Animal Population Estimation

We now have the estimated total number of individuals seen on day 1 (n1), day 2 (n1), and

the number of individuals sighted on both days (nB). Let nT ∈ Z
+ be the actual total number of

individuals in the animal population. We would also like to estimate nT as well, given the ratio of

animals that were resighted (nB) by calculating its most likely value. The likelihood function for

nT is sampled from a hypergeometric distribution and, since we are sampling (without replacement)

from a fixed pool of individuals, is defined as:

L(nT ♣nB) =



n1

nB



∗



nT − n1

n2 − nB





nT

n2

 (4.11)

To find the most likely population estimate argmax
nT

L(nT ♣NB) we must measure the increase in

likelihood from nT −1 to nT since we cannot integrate it directly as a non-continuous integer value.

We must instead maximize the ratio of likelihoods as:

L(nT ♣nB)

L(nT − 1♣nB)
=



n1

nB



∗


nT −n1

n2−nB





nT

n2





n1

nB



∗


nT −n1−1
n2−nB





nT −1
n2



=
(nT − n1) ∗ (nT − n2)

nT ∗ (nT − n1 − n2 + nB)

(4.12)
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The above ratio exceeds 1 if and only if

nT ∗ (nT − n1 − n2 + nB) < (nT − n1) ∗ (nT − n2)

nT <
n1n2

nB

(4.13)

Therefore, the maximum likelihood for the population estimate is:

nT =


n1 ∗ n2

nB

⌋

(4.14)

Equation (4.14) forms the statistical basis of the Lincoln-Petersen [376] estimator when it is assumed

that nT is sampled from a uniform prior distribution (Assumption 1). Furthermore, a confidence

interval (CI) can be added to the estimator using the appropriate Weld method, as derived by [12]

and [332]:

nLP = µLP ± zα/2 ∗ σLP

where

µLP = nT =


n1 ∗ n2

nB

⌋

and

σLP =

√

√

√

√

n1 ∗ n2 ∗ (n1 − nB) ∗ (n2 − nB)

n3
B

(4.15)

The final Lincoln-Petersen population estimate nLP is a value with a likelihood range22. For a

confidence interval of 95%, we set zα/2 = 1.96.

22The α term here is overloaded in our notation and does not refer to the day α, but rather a proportion of likelihood
for the estimate falling outside of the CI.
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4.3.6 Population Estimate Mean

Combining Equations (4.7) and (4.10) with (4.15) for the population estimate mean µLP :

µLP =


n1 ∗ n2

nB

⌋

≈

⌊

n̂1 ∗ n̂2 ∗ (1 − p̂dm(θ) + p̂ds(θ))2 ∗ (1 + p̂mm(θ) − p̂ms(θ))

n̂B ∗ (1 − p̂dm(θ))2

⌋

≈

⌊

n̂1 ∗ n̂2

n̂B

⌋

∗
(1 − p̂dm(θ) + p̂ds(θ))2 ∗ (1 + p̂mm(θ) − p̂ms(θ))

(1 − p̂dm(θ))2

≈ µ̂LP ∗
(1 − p̂dm(θ) + p̂ds(θ))2 ∗ (1 + p̂mm(θ) − p̂ms(θ))

(1 − p̂dm(θ))2

(4.16)

This implies that the final Lincoln-Petersen estimate µLP is approximated by the estimate µ̂LP as

calculated directly from the number of animals and resightings in the animal ID database. In practice,

the parameters for θ can be selected such that the chance of adding a spurious, comparable detection

to the census is low, with the ID curation process also ensuring that the chance is functionally zero

by requiring a final review of all singletons for irrelevant or incomparable annotations. As a result,

if the animal IDs in the database are comprised of only relevant and comparable annotations, then

p̂ds(θ) = 0. Thus, the ratio between the final and calculated estimates is:

µLP

µ̂LP

≈ 1 + p̂mm(θ) − p̂ms(θ) (4.17)

and indicates that matching errors mainly impact the final population estimate. This derivation is

encouraging for our desire to do annotation filtering because it implies that focusing on comparability

and automated curation has less impact on the accuracy of the population estimate. When the rate

of spurious detections is zero, the bias from unmatched singletons to push the population estimate

higher is eliminated. This fact reinforces the need to perform manual verification of the singletons

throughout the curation process as the work needed by humans can be directly justified as improving

the accuracy of the estimate. In practice, the hope would be that p̂ms(θ) is small enough to have

a trivial effect on the estimate. For example, a goal of the decision management and verification

algorithms is to drive the chance of a lingering split in the database to zero with accurate human

decisions and internal consistency checks for all animal IDs. This process would leave lingering

merges and p̂mm(θ) as the only significant source of error from machine learning algorithms that
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could incorrectly inflate the population estimate.

4.3.7 Population Estimate Confidence Interval

We now wish to combine Equations (4.7) and (4.10) with (4.15) for the population estimate

confidence interval σLP . We will drop the floor notations here for clarity because a) their effect is

less significant inside the radical and b) we are already manipulating approximated values.

σLP =

√

√

√

√

n1 ∗ n2 ∗ (n1 − nB) ∗ (n2 − nB)

n3
B

=

√

A ∗ B

C

where

A = n1 ∗ n2

≈ n̂1 ∗ n̂2 ∗ (1 − p̂dm(θ) + p̂ds(θ))2 ∗ (1 + p̂mm(θ) − p̂ms(θ))2

B = (n1 − nB) ∗ (n2 − nB)

≈
[

n̂1 ∗ (1 − p̂dm(θ) + p̂ds(θ)) − n̂B ∗ (1 − p̂dm(θ))2
]

∗
[

n̂2 ∗ (1 − p̂dm(θ) + p̂ds(θ)) − n̂B ∗ (1 − p̂dm(θ))2
]

∗ (1 + p̂mm(θ) − p̂ms(θ))2

C = n3
B

≈ n̂3
B ∗ (1 − p̂dm(θ))6 ∗ (1 + p̂mm(θ) − p̂ms(θ))3

(4.18)
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This means that the approximated CI value from Equation (4.18) simplifies to:

σLP =

√

A ∗ B

C

≈

√

√

√

√

n̂1 ∗ n̂2 ∗ (1 − p̂dm(θ) + p̂ds(θ))2 ∗ (1 + p̂mm(θ) − p̂ms(θ))

n̂3
B ∗ (1 − p̂dm(θ))6

∗
√

n̂1 ∗ (1 − p̂dm(θ) + p̂ds(θ)) − n̂B ∗ (1 − p̂dm(θ))2

∗
√

n̂2 ∗ (1 − p̂dm(θ) + p̂ds(θ)) − n̂B ∗ (1 − p̂dm(θ))2

≈

√

√

√

√

n̂1 ∗ n̂2 ∗ (n̂1 − n̂B) ∗ (n̂2 − n̂B)

n̂3
B

∗

√

√

√

√

(1 − p̂dm(θ) + p̂ds(θ))2 ∗ (1 + p̂mm(θ) − p̂ms(θ))

(1 − p̂dm(θ))6 ∗ (n̂1 − n̂B) ∗ (n̂2 − n̂B)

∗
√

n̂1 ∗ (1 − p̂dm(θ) + p̂ds(θ)) − n̂B ∗ (1 − p̂dm(θ))2

∗
√

n̂2 ∗ (1 − p̂dm(θ) + p̂ds(θ)) − n̂B ∗ (1 − p̂dm(θ))2

≈ σ̂LP ∗

√

√

√

√

(1 − p̂dm(θ) + p̂ds(θ))2 ∗ (1 + p̂mm(θ) − p̂ms(θ))

(1 − p̂dm(θ))6 ∗ (n̂1 − n̂B) ∗ (n̂2 − n̂B)

∗
√

n̂1 ∗ (1 − p̂dm(θ) + p̂ds(θ)) − n̂B ∗ (1 − p̂dm(θ))2

∗
√

n̂2 ∗ (1 − p̂dm(θ) + p̂ds(θ)) − n̂B ∗ (1 − p̂dm(θ))2

(4.19)
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If we apply the same assumptions about θ and the curation process where p̂ds(θ) = 0, then

Equation (4.19) above simplifies considerably and the ratio between the final and estimated CI is:

σLP

σ̂LP

≈

√

1 + p̂mm(θ) − p̂ms(θ)

1 − p̂dm(θ)

∗

√

√

√

√

(n̂1 − n̂B ∗ (1 − p̂dm(θ))) ∗ (n̂2 − n̂B ∗ (1 − p̂dm(θ)))

(n̂1 − n̂B) ∗ (n̂2 − n̂B)

(4.20)

Equation (4.20) implies that the probability of missing a detection most significantly impacts the

Confidence Interval (CI) for the Lincoln-Petersen estimator. In summary, the Lincoln-Petersen

estimator (with CI) from Equation (4.15) can be extended with Equations (4.7) and (4.10) to support

the error rates of machine learning algorithms as:

nLP = µLP ± zα/2 ∗ σLP

≈

⌊

n̂1 ∗ n̂2 ∗ β

n̂B

⌋

± 1.96 ∗

√

√

√

√

n̂1 ∗ n̂2 ∗ β ∗ (n̂1 − n̂B ∗ γ) ∗ (n̂2 − n̂B ∗ γ)

n̂3
B ∗ γ2

where

β = 1 + p̂mm(θ) − p̂ms(θ)

γ = 1 − p̂dm(θ)

(4.21)

The equation above extends the standard Lincoln-Petersen estimator by adding three specific terms

for machine learning errors. The lack of p̂ds(θ) in these equations is convenient but comes at the cost

of required human work to double-check the validity of infrequently-seen animal IDs. The required

error rate estimates and this derivation will be used in Chapter 6 to estimate the final population of

Grévy’s zebra in Kenya.

4.4 The Grévy’s Zebra Census Dataset (GZCD)

Most animal computer vision datasets are primarily concerned with evaluating “classic”

machine learning components, such as training and evaluation data for a detector that only relies on

annotating boxes for a series of images. This kind of annotation work is easily distributed and is
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Table 4.1: The number of images captured in Meru county on two days of the GGR-16 and
two days of the GGR-18.

Rally Day Date Images
GGR 2016 Day 1 January 30th, 2016 1,209
GGR 2016 Day 2 January 31st, 2016 1,695
GGR 2018 Day 1 January 28th, 2018 1,331
GGR 2018 Day 2 January 29th, 2018 1,229
TOTAL 5,464

quick to verify as the images can be considered in isolation from each other. This linear complexity

for detection-style curation is in sharp contrast with the quadratic complexity of ID curation, where

a fully manual review of all pairs of annotations in a database quickly outpaces the ability of

humans to curate it exhaustively. However, a reliable, ground-truth target for the actual number

of animals in a population is needed to properly evaluate the effectiveness of annotation filtering

methods and measure their relative impact on the final population estimate. Furthermore, this ID

ground-truth needs to be constructed using easy-to-ID and difficult-to-ID annotations of animals

because distracting, time-consuming data is what the filtering is designed to minimize. Animal ID

often relies on impeccably clean (i.e., exemplar) animal sightings and often entirely precludes poor

images from being given ground-truth IDs. The above presents a challenging dataset problem, as

there did not previously exist a readily available, reliable, curated, and large-scale photographic

dataset for animal ID that offered both relevant and compromised data. While there are a few

existing animal ID datasets available publicly, they do not offer the high level of robustness and

completeness needed to validate the process of photographic censusing fully. The Grévy’s Zebra

Census Dataset (GZCD) is proposed here to fill this critical gap and will be made available to the

research community in the future.

4.4.1 Images & Annotations

The images in the GZCD dataset are sourced from Meru County, Kenya and are taken over

four days of the Great Grévy’s Rally (GGR) in 2016 and 2018. These two photographic censusing

rallies will be described in more detail in Chapter 6 but – to provide a quick summary – each event

was designed to be a “snapshot” photographic census of the resident Grévy’s zebra population in

Kenya. Photographs were taken on two consecutive days in January during each rally, as shown in
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Figure 4.4: The map of image GPS locations in the GZCD dataset. Meru County, Kenya (in
red) is located north of the capitol (star) and is at the base of Mt. Kenya. The
dataset is comprised of 5,464 images, taken mostly over 4 days (2 days in 2016 and
2 days in 2018), by 13 photographers. Includes all images by photographers that
took images in Meru County, even if they were not taken in that county.

Table 4.1. The photographers were trained to capture a consistent viewpoint (right side) for Grévy’s

zebra and focus on comparable sightings for their eventual ID during both events. The spatial subset

for Meru County, Kenya is geographically isolated by mountains from neighboring conservation

areas, giving the expectation that the population is largely self-contained [5]. The images in the

dataset were taken by 13 photographers (8 from GGR 2016, 5 from GGR 2018). Furthermore, all of

the images taken by these photographers were included in the GZGC dataset; images were even

included if taken outside Meru County and captured outside the four censusing event days. See

Figure 4.4 for GPS locations of the images. In total, 5,464 images were selected for use with the

dataset.

The dataset is highly curated; bounding boxes (annotations) and labels (species, viewpoint,

and quality) were manually set for all animals to ensure accuracy and consistency. The annotations

in the dataset cover 23 unique object classes, ranging from “gazelle” to “car” to “bird” to two

different species of zebra. In total, 13,823 annotations were created, of which 9,205 were of

Grévy’s zebra. On average, 2.5 annotations were created per image, with one image contributing 44

annotations. The photographers correctly followed the instructions to emphasize taking images of

the intended sides of the animals (back-right, right, and front-right); human reviewers found a total

of 7,372 annotations showing some degree of the right side. Of these, blurry and otherwise poor

images were filtered out using a human-labeled quality decision, keeping 4,119 candidate “quality
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Figure 4.5: Example annotations from GGR-18 that are poor candidates for identification.
These images are fairly typical (i.e. not extreme outliers) and demonstrate the
various types of problems encountered by data collection (from top left to bottom
right): (top row) occlusion, high amounts of overlap, quality (focus), and (bottom
row) truncation, viewpoint/pose, and context.

baseline” annotations for ID review. Figure 4.5 shows example annotations which are not useful for

visual ID. Furthermore, relatively poor-quality annotations were also needed to demonstrate that the

filtering supplied by Census Annotations (described in Chapter 5) worked to improve matching. The

CA classifier for Grévy’s zebra was run with an exceptionally low threshold of 0.001 (compared to

the recommended value of 0.31) to search for “bad” annotations but still filtered out abject “junk”

annotations that showed nothing worthwhile. An additional set of 1,162 low-quality annotations

were added for the purpose of evaluating CA, and a resulting collection of 5,281 annotations was

sent ID for curation.

The state-of-the-art visual ranking algorithm HotSpotter [261] was used to find different

annotations of the same animal. The annotations were visually matched by creating a searchable

database of SIFT features and generated results in a ranked list of potential matches. The graph of

annotations was fully curated using this ranked list of matches and the Graph ID algorithm [13].

The algorithm uses a series of phases that switches back and forth between adding positive decisions

from ranking and ensuring that those decisions are consistent with the state of the graph as an

automated classifier and human reviewers make decisions. The algorithm has five distinct phases
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and begins with an initial recovery condition (phase 0) to ensure that the current graph has no

inconsistencies. An inconsistency is created when a chain of nodes connected by positive decisions

also has negative decisions between two of its members (and vise-versa). Once all inconsistencies

are manually resolved, phase 1 continues by reviewing a list of match decisions recommended by a

ranking algorithm. Each pair was given to VAMP [13] using a pre-trained verification algorithm

configured for Grévy’s zebra and was either automatically decided using a set threshold or was

subsequently given to a human to make a manual decision. This process continues until all of

the decisions have been considered, and all inconsistencies are resolved. After the initial ranking,

pockets of nodes within the graph form positive connected components (PCC). Phase 2 reinforces all

of the PCCs in the graph by ensuring that each node has a set (two, by default) number of redundant

positive decisions with another member of the connected component, searching for possible splits.

A negative redundancy check is performed in Phase 3 between all of the matched PCCs to ensure

sufficient checks for unresolved merges. Finally, the algorithm converges in Phase 4 when all

(or a statistically significant number) of the PCCs satisfy the positive and negative redundancy

requirements, and its ID graph is free of inconsistencies.

In summary, 5,281 zebra annotations were clustered into 554 names, using 24,129 automated

and 43,048 human pair decisions. This work required thousands of hours of review by an external

team of human reviewers. Each annotation participated in 25.7 decisions on average (σ=34.3). Thus,

the image data collected in Meru County during the two GGR events represented an ideal dataset for

evaluation since it is self-contained, contains a sufficiently large population, and is highly curated.

4.4.2 ID Curation & Accuracy Verification

Over 67,000 pairwise decisions were made using the Graph ID algorithm [13] to ensure that

each cluster of annotations was internally consistent, representing a comprehensive (but not entirely

exhaustive) review of the population graph. The Graph ID required each annotation within an

animal ID (representing a single named zebra) to have at least two positive decisions with other

annotations in the same cluster, whenever possible. This redundancy requirement ensured that a

given name did not incorrectly contain multiple animals by mistake, otherwise requiring a split and

increasing the number of names. We also configured the algorithm to require each animal ID to have

at least two negative decisions between all other matched IDs. This requirement ensured that a given

cluster did not need to be combined with another. Otherwise, the database would require a merge,

and the number of names would decrease. In total, each annotation, on average, participated in 5.5
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positive and 20.0 negative decisions. The effort required to create this dataset involved hundreds of

hours of human labeling, months’ worth of review, and over $10,000 in direct payments for external

labor.

The ML-based automated decision classifier used for approximately 40% of the decisions

was not a perfect oracle. The algorithm (VAMP [13]) was configured to allow positive and negative

decisions if the predicted confidence was above a threshold, 0.7732 and 0.8605, respectively. Based

on cross-validation results, these thresholds were selected with validation data to allow an FPR

≤ 1%. Since the Graph ID algorithm enforced redundancy and ensured consistency, there are likely

to be few name errors resulting from using this automated classifier. The chance of systematic

errors is even less likely because each annotation participated in 16.3 (σ=28.6) human decisions on

average.

The experimental LCA algorithm was then run on the final clusters produced by Graph ID to

identify possible ground-truth errors and further validate the GZCD. The PIE triplet-loss algorithm

was also trained on the ground-truth IDs on Census Annotation Regions. The verification of the ID

database was performed in multiple stages of review, using the following combinations: Graph ID

with HotSpotter as the ranker and VAMP as the verifier (legacy configuration), LCA with HotSpotter

and VAMP, LCA with HotSpotter and PIE, LCA with PIE and VAMP, and LCA with PIE as the

ranker and PIE (as well) as the verifier. Each round of verification simulated the final state of the

database using the ground-truth human decisions already in the database. When the converged

animal ID database was calculated, it was compared to the existing ground-truth database, and

differences were examined by hand. The first comparison identified 37 ID updates that performed

14 splits, 13 merges, and corrected 10 miscellaneous labeling errors. The split cases were identified

as challenging photobomb examples, which had animals seen together on multiple occasions and 1

mother/foal example (originally VAMP false positives). A benefit of using this additional check is

that some animal IDs were suggested to be split by removing only one annotation, which identified

inappropriate (i.e., poor quality) annotations that needed to be discarded. The merge issues found

by the PIE ranking algorithm mainly were concerned with adding a singleton ID into a larger

ID for the same animal (Graph ID retrieval errors). It was apparent during a review that some

errors were caused by poor quality annotations or had a very oblique angle (ground-truth labeling

error). Once all animal IDs were fixed in the database, no further corrections were identified from

subsequent simulations and a manual review of their suggested changes. In summary, the final

GZCD database is found to be consistent by the following: two detection filtering configurations
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(baseline quality annotations and CAs), two separate ranking algorithms (a hand-engineered feature

and learned embedding), two decision management algorithms (one that ensures positive/negative

redundancy and another on cluster stability), two verification algorithms (random-forest classifier

and a distance-based embedding), and over 43,000 human verification decisions of annotation pairs.

Any ID analysis of the number of annotations and names must also consider encounters. An

encounter is defined as an animal that is seen during a single occurrence. An occurrence is the

collection of all images that are taken at the same location and time. Another way of phrasing this:

if a photographer took ten pictures of the same animal within one second, that would result in ten

unique annotations but still only one encounter of that animal. If ten photographers each took ten

pictures of one animal during the same occurrence, that would result in 100 annotations but still

only one encounter of that animal. This analysis is intended to identify how many unique encounters

an animal has because it represents a more accurate semantic understanding of how many times an

animal is truly resighted. For a population estimate, the number of animals that were sighted (or

encountered) on days 1 and 2 of a given census can be calculated and compared to the number of

animals that were encountered on both days (resightings).

The number of occurrences was calculated using an agglomerate clustering of GPS coordinates

and EXIF times provided by the GPS-enabled cameras. We assumed a maximum speed of 2 m/s

for a walking zebra and required that images be taken within 10 minutes. The dataset offers 296

unique occurrences and 1,803 encounters of zebras. The average occurrence has 25.1 named

zebra annotations but only 8.6 encounters, indicating that each encounter contains around 2.9

annotations on average. The amount of review redundancy for encounters is dramatic, with 51.2

total decisions on average. In summary, the dataset contains 554 uniquely named zebras, with 9.5

(σ=8.4) annotations and 3.3 (σ=2.2) encounters per name on average. There are 95 names that

contain only one annotation (and trivially only one encounter) and are referred to as singletons

against the remaining 459 multitons. The most often-seen animal had 49 annotations and 14

encounters. When viewing names within encounters, there are 172 “encounter singletons” (up from

95 annotation singletons) and 382 “encounter multitons” (down from 459 annotation multitons).

For GGR 2016, 263 and 334 unique names were seen on days 1 and 2, respectively, and 219

on both days. For GGR 2018, 312 and 302 unique names were seen on days 1 and 2, respectively,

and 210 on both days. Using the standard Lincoln-Petersen estimator, the zebra population is

calculated to be 402.0 ± 32.0 in 2016 and 449.0 ± 34.0 in 2018 with a 95% confidence interval.

Thus, the dataset captures 94.0% of Grévy’s zebra in 2016 and 90.0% in 2018 for Meru county
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when comparing the total number of names seen each year. Further, 228 animals were resighted

across the two-year census gap, and 107 were sighted on all four days. These numbers indicate

that the resident population of zebra in Meru County is highly stable over time – over 50% of

the expected population in 2016 was resighted in 2018. Thus, the expected population estimates

indicate a healthy 12% population growth rate over two years for Grévy’s zebra in Meru County,

Kenya.

4.5 Summary

This chapter introduces the concept of photographic censusing for the problem of large-scale

animal population censusing. The methodology is designed as an end-to-end process. It uses

machine learning components for automation, including: 1) a detection pipeline to find relevant

and comparable annotations, 2) a ranking algorithm to search for visual matches, 3) a decision

management algorithm to control how and why human work is needed, and 4) a verification

algorithm to automate the review of pairs of annotations. Beyond these components, the procedure

uses human-in-the-loop reviewers and a population estimator to produce a final population estimate.

The population estimate generated by photographic censusing is calculated by the Lincoln-Petersen

estimator, which is extended here to add new terms for machine learning errors. Lastly, a significant

contribution of this chapter is the creation of a large ID dataset (GZCD) for evaluating animal

detection, animal identification, and – most importantly – the end-to-end censusing process. The

next chapter will use this evaluation dataset to show how finding comparable annotations is crucial

to automation.



CHAPTER 5

CENSUS ANNOTATION

Automated photographic censusing is sensitive to how its annotations are selected and why they

have matched. When the ID curation process encounters incomparable pairs or incidental matching,

it can create errors in the ID database that must be fixed with human interaction, as we have

discussed. Fortunately, the adverse effects on automation and accuracy can be mitigated when

1) the ID curation process only considers comparable annotations and 2) the automated ranking

algorithm is forced to compare the appropriate visual information between annotations. Let us

consider a real-world example shown in Figure 5.1 on the next page, with two images (top and

bottom) of Grévy’s zebra (Equus grevyi). Of the 13 animals seen across both images, only four

are valuable to photographic censusing (highlighted as red and blue annotations) because they are

universally comparable. The remaining nine annotations (in dashed green) are either incompatible

or too challenging for censusing as they show incorrect viewpoints23, are truncated by the edge of

the image, or are significantly occluded by other animals or brush. The middle row of Figure 5.1

shows two comparable annotations (red and blue outline) of the same animal, with matched patterns

highlighted in yellow (within the purple dashed ovals) from the HotSpotter [13] algorithm. If all

purple oval regions were artificially blacked out, verifying the pair by hand would be substantially

more difficult and would take a human more time to make an accurate decision. Furthermore, we

recognize that the visual information outside the purple rectangles for each annotation is not critical

to this verification task. The pixels outside the purple boxes could have been safely omitted to focus

the verifier’s attention on the matched area without impacting the ability to make a “same animal”

decision.

New detection methods are needed that can 1) quickly determine if an annotation is compa-

rable and 2) remove distracting background information by locating the area that is most likely

to match for that species. This chapter introduces the concepts of “Census Annotation” (CA) and

“Census Annotation Region” (CA-R) to address these two problems, and it proposes adding two

new machine learning components to the existing detection pipeline:

1. Census Annotation (CA) - a binary classifier that determines if an annotation contains a

comparable region and produces a confidence score, and

23The decision on a preferred viewpoint is arbitrary but needs to be consistent throughout a census. The right side
was preferred for all image collections with Grévy’s zebra and reticulated giraffe (Giraffa reticulata). These two species
have different patterns on their left and right sides and thus cannot be compared across differing viewpoints.
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2. Census Annotation Region (CA-R) - a regression network that restricts an annotation’s

existing bounding box to only include the comparable region for a given species.

An annotation is determined to be a Census Annotation if and only if a valid Census Annotation

Region can be drawn inside its existing bounding box. Furthermore, A Census Annotation Region24

must contain enough visual ID information to prevent the possibility of an incomparable match

decision (for a given ranking algorithm). Thus, by definition, if a CA-R bounding box cannot be

drawn for an annotation, it cannot be a CA. Furthermore, if two CA Regions are incomparable, at

least one of the annotations is not a valid CA. For example, the hip and shoulder chevron (purple

dashed ovals in Figure 5.1) are required for Grévy’s zebra annotations to be considered comparable.

Missing either of those two areas makes the annotation less likely to reliably match, increasing the

possibility of an incomparable decision and the ultimate need for human intervention. To prevent

this, the CA-R region for that species must clearly contain both of these regions.

The remaining sections of this chapter present a description of the methods and an analysis of

both Census Annotations and Census Annotation Regions. First, a dataset for training both of these

components is presented for Grévy’s zebra and reticulated giraffe, which were the species of interest

for the Great Grévy’s Rally in 2018 (discussed in Chapter 6). A user study is also performed on how

accurately and quickly humans can distinguish match pairs between “normal” detected annotations,

CAs, and CA-Rs. Using CAs and CA-Rs with ID curation also positively impacts the performance

of automated verifiers, and analysis on training stability and score separability is provided. The

discussion then turns to incidental matching and how CA-R can reduce the rate of photobombs

and scenery matches by eliminating the background information that causes these types of errors.

Lastly, automated simulations are used to measure how much human effort is needed to curate an

animal ID database from scratch, with and without CA and CA-R, and demonstrate two crucial

results: 1) using CAs and CA-Rs during ID curation results in a substantial increase in automation,

2) the population estimates produced when only CAs and CA-Rs are considered are consistent with

the estimate generated when a more comprehensive set of annotations from GZCD (described in

Section 4.4) are used.

24Census Annotation Regions may be referred to as “CA-R” or “CA Regions” in this discussion, as needed, for
clarity.
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Figure 5.1: An example of identification matching with two Census Annotations. Image 1
(top) shows a Census Annotation (CA) in red, which captures the same individual
as the blue Census Annotation in Image 2 (bottom). The matched CAs (purple
boxes) both contain the distinct chevron and hip regions (ovals) that commonly
match by ID.
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5.1 Census Annotation Dataset

Both the Census Annotation and Census Annotation Region components were trained on a

dedicated dataset for the problem and are evaluated as stand-alone machine learning approaches,

separating them from the photographic censusing experiments later in this chapter and the creation

of the GZCD from Chapter 4. A collection of 10,229 Grévy’s zebra and 2,322 reticulated giraffe

annotations were exported from the Great Grévy’s Rally 2018 dataset, along with their original

images and any other annotations that were also seen in those images. A reviewer was provided with

a grid of annotations in a web interface to select the annotations that were CAs for the respective

species. For this task, a CA was defined as any annotation that clearly showed (i.e., in focus, well

lit) a right-side Grévy’s zebra with its hip and shoulder region visible. For a reticulated giraffe,

the body region needed to be fully visible (ignoring any ability to see the neck, head, and legs) for

its annotation to be considered a valid CA. Each grid presented 500 annotations, and the reviewer

toggled the state for a specific annotation by clicking on an image’s thumbnail. The decisions were

saved in bulk for the entire grid, and the process was repeated with subsequent grids of unlabeled

annotations until the entire dataset was reviewed. Once all ground-truth CA decisions were added, a

second independent review (by a second person) was performed for all negative “non-CA” (NCA)

annotations and positive CA annotations, as two separate groups, to cross-check for ground-truth

errors.

In total, the manual ground-truth labeling resulted in 1,837 Census Annotations (17.95%)

for Grévy’s zebra and 230 (9.9%) for reticulated giraffe. Figure 5.2 shows examples of Census

Annotations (right, no border) and non-CAs (left, red border) for Grévy’s zebra (top two rows) and

reticulated giraffe (bottom two rows). All of the Census Annotations for Grévy’s zebra were then

reviewed further with a different web interface (see Figure 5.3) to add Census Annotation Region

bounding boxes. The CA-R bounding box (green box) was required to be axis-aligned with the

CA’s bounding box (red box) and was not allowed to extend outside the bounds of the original

CA annotation’s bounding box. In total, 1,837 boxes were annotated, one CA-R for each Grévy’s

zebra CA in the training dataset. The reticulated giraffe CAs were not annotated with CA-R boxes

because of the relatively low number of examples for training and validation, with less than 50

annotations reserved for held-out experiments. The images in the dataset were then partitioned

into separate train (80%) and validation (20%) sets and stratified such that a balanced number of

annotations per image occurred in each set.
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Figure 5.2: Example images of Census Annotations for Grévy’s zebra and reticulated giraffe.
Annotations that were marked as non-CAs by a reviewer (left two columns) vs.
marked as census (right two columns). Grévy’s Zebra are displayed on the top
two rows and reticulated giraffe are shown on the bottom two rows.

5.1.1 Comparison to Annotation of Interest (AoI) and Quality

The concept of Census Annotation can be viewed as the annotation-level complement to

Annotation of Interest (AoI). The notion of an “annotation of interest” is inherently an image-level

determination on the primary subject(s) of an image and functions to determine which animals were

incidentally seen in the background. This focus on finding good quality foreground sightings of

animals is related to Census Annotation, but AoI and CA do not overlap perfectly in their goals. In

contrast, Census Annotation represents the comparability between two annotations. The notion of

CA ensures that reliable identifying information is always available, regardless of where and how

the annotation exists in the image composition. Figure 5.4 provides examples of when AoI and CA



132

Figure 5.3: An image of the Census Annotation Region web annotation interface. The web
interface used to annotate Census Annotation Regions (green box) onto existing
Census Annotations (red box). CA Regions are assigned to an existing annotation
as a “part” and can inherit important metadata like species, viewpoint, and name
assignments.

can disagree. While an annotation that is not an AoI is also not likely to be a Census Annotation, it

is not guaranteed to be the case, as seen in the bottom row. An annotation can also be considered an

AoI based on the semantic context of the image but does not show enough clear and reliable ID

information to be considered a Census Annotation (top row).

Furthermore, the detection pipeline’s labeler has the ability to predict an explicit “quality”

value for annotations (e.g. junk, good, perfect). This feature was originally used in previous

experiments with photographic censusing (see [2]) to filter annotations for ID curation but was

ultimately abandoned. The problem is that “quality” is a fairly subjective measurement (i.e., it is hard

to get consistent ground-truth labels) and does not guarantee that two acceptable quality annotations

will be comparable. Although a quality metric and AoI can be highly correlated with Census

Annotation, they are insufficient replacements when the goal is to eliminate incomparable decisions

from ID curation. As such, the eventual formulation of Census Annotation is the culmination of

real-world experimentation with large censusing events that have failed to achieve high degrees of
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Figure 5.4: Example images of the disagreement between AoI and Census Annotation. The
top row provides an example of an annotation that is an AoI but not a CA, with
the annotation (left) and image (right). The red annotations in the images are
provided at a higher resolution to the right. The giraffe is a borderline AoI due to
its occlusion, but it is one of the primary subjects of the image and is decidedly in
the foreground. The bottom row gives an example of a Census Annotation that is
not an AoI. The animal is clearly comparable as seen by the annotation but is seen
far away (small scale) and is a member of a herd, two items that make it a difficult
case for AoI.

automation (due to challenges discussed previously in Chapter 4).

The notions of AoI, quality, and CA can be compared and contrasted using the ground-truth

labels in the GZCD. In that dataset, there is a total of 9,205 Grévy’s zebra annotations. Of those,

4,246 have been ground-truth annotated as AoIs, 7,372 show some degree of the animal’s right side,

and 4,119 have an acceptable quality value. In addition, there are 4,005 Census Annotations in that

dataset, with a 93.4% overlap with a quality filter and 87.4% overlap with AoI. In summary, these

values suggest that a quality metric and even AoI can be somewhat helpful in filtering annotations,

but with the addition of CA to the detection pipeline, they are largely redundant. That being said,

Annotation of Interest is still used to validate the detector’s performance and is still worthwhile to
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Figure 5.5: Examples of on-the-fly training augmentations for the Census Annotation
classifier. Positive samples are highlighted with a green border (CA examples)
while negative samples have a red border (Non-CA examples). Each example
received a unique, randomized augmentation for each epoch and was computed
on-the-fly.

annotate, but a quality value for each annotation is no longer necessary as Census Annotation has

superseded it. We will now shift our attention to the implementation details of the CA and CA-R

methodologies and analyze their stand-alone performances as new detection components.

5.2 Census Annotation (CA)

The Census Annotation classifier was trained using a pre-trained DenseNet 201 [89] feature

extraction network with a linear classification layer added on top. The network was fine-tuned

with SGD (LR 0.001, momentum 0.9, and a ten epoch patience LR schedule) and used a standard

Cross-Entropy loss. The input images were sent through a moderate level of data augmentation

(e.g., contrast normalization, per-channel pixel noise, hue and saturation changes, piece-wise Affine
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transformations on a small grid, and slight rotations and shearing). Example augmentations for a

given image (top row) can be seen in Figure 5.5 for negative non-CA (red border) and positive CA

(green border) annotations. Furthermore, each mini-batch was sampled such that it had a balanced

number of positive and negative examples. The classifier was trained as an ensemble of three

separate neural network models (each with unique initialization), and their respective outputs are

averaged into a single prediction during inference. This neural network design is standardized

and shares principles with existing detection pipeline classification components like the annotation

labeler (see Section 3.4). The CA component remains independent of previous detection methods,

however, and its modular implementation can be disabled or updated as needed without impacting

other components.

A series of four CA classifier models were trained using different configurations of data

augmentation and iteratively better ground-truth training data between each version. The training

examples for each CA classifier were selected using a simple species filter and did not consider

viewpoint or quality. The purpose was to train the CA models on ideal CA examples, annotations

that were obviously incorrect (e.g., wrong viewpoint), and annotations that had relatively good

quality overall but were ultimately incomparable. The final version (V4) has the best performance

on the held-out validation data (see Figure 5.6, left). This result is expected as the data augmentation

scheme was improved for that model to be more aggressive (acting as a better regularizer). In

addition, it was trained on the cleanest data after label corrections were applied to the ground-truth.

In total, 26 CA ground-truth labeling errors (0.6%) were identified in the GZCD and fixed by

hand. Overall, the V4 model achieves a classification accuracy of 96.8% for Grévy’s zebra using an

operating point (OP) of 0.31. In addition, the model makes 54 false positive (FP) decisions compared

to 7 false negatives (FN). This balance of errors is a good trade-off for a filtering component because

we can treat Type I misclassifications as extra work (and not invalid data) during ID curation.

Therefore, the practical success rate of the classifier is 99.6% when we consider false negatives are

the most problematic source of error.

The Census Annotation classifier was also trained and evaluated on reticulated giraffes. Even

though the total number of annotations was significantly smaller, the CA classifier still did well

to classify 91.3% of the examples correctly (see Figure 5.6, right). Suppose we apply the same

logic about false positives being a less worrisome type of error. In that case, the model only

makes two mistakes out of 470 annotations (99.6%) on held-out validation data for the price of

reviewing an additional 39 annotations. Upon inspection, the annotations that the zebra and giraffe
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Figure 5.6: The ROC performance curves for the Census Annotation classifier. Top: ROC
curves showing the classification performance and their respective
Area-Under-Curve volumes (AUC) for Grévy’s zebra (left) and reticulated giraffe
(right). Bottom: The Confusion Matrix for the best model (V4 for zebras, V1 for
giraffe) and best operating point (zebra OP=0.31, giraffe OP=0.07) as determined
by the colored dot in the various ROC curves. The accuracy of the Grévy’s zebra
CA classifier is 96.8% and 91.3% for reticulated giraffes, but if false positives are
treated as extra work and not errors then the accuracy increases to 99.6% for
both models.
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Figure 5.7: An example image of a Census Annotation Region, which is defined by its four
edge components: x0 (left, red), x1 (right, blue), y0 (top, green), and y1 (bottom,
purple).

models incorrectly predict as CAs are mostly borderline (subjective) cases in the ground-truth

labels. Ultimately, the number of giraffe annotations in the GZCD was too small for a worthwhile

evaluation with CA-R. Moreover, the GZCD focused exclusively on Grévy’s zebra, so a large,

authoritative ID dataset does not currently exist to demonstrate any potential improvements in

incidental matching. The lack of a reliable ID database for reticulated giraffes is primarily due

to limited resources considering how much time and energy was spent curating and verifying

the Grévy’s zebra IDs in the GZCD. As such, the remaining analysis on CA-R, and following

discussions in this chapter, are focused entirely on Grévy’s zebras.

5.3 Census Annotation Region (CA-R)

The Census Annotation Region model was trained as a regression network that is tasked with

predicting four simple values (shown in Figure 5.7): x0 (left, red), x1 (right, blue), y0 (top, green),

and y1 (bottom, purple). All of the original CA bounding boxes are assumed to be rotated where

the animal’s head is at the top of the box. Furthermore, the CA Region bounding boxes were all
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assumed to have inherited the rotation of their associated CA. This setup means that each of the

four edges of the CA Region bounding box (top, bottom, left, and right) can be represented by a

single value for how many pixels it is away from the corresponding edge of the CA’s bounding

box. All x-axis pixel offsets are converted to a decimal value from 0.0 to 1.0 by dividing by the

annotation’s width. This process is repeated for y-axis pixel offsets with the pixel height of the

annotation. Therefore, the network was trained to predict a positive value between 0.0 and 1.0

for each of the four edges of the CA Region’s bounding box as a residual from the original box’s

bounding box location.

The CA-R regression network has a similar convolutional back-end to the CA classifier: the

model is fine-tuned with SGD (initial LR 0.0005), uses similar data augmentation as the CA model

(but without translation or rotation operations), has a DenseNet 201 architecture with pre-trained

weights, and uses a 4-node linear layer for its output. The network is optimized using a modified

loss function for mean squared error (L2), with additional terms for the “over-shooting” (α) and

“under-shooting” (β) components of the standardized regression loss. In general, the expectation

is that any distracting background information is along the edge of the CA’s original bounding

box. We are trying to minimize background information, but that goal should not come at the cost

of accidentally removing useful ID information on the animal’s body. The resulting loss term is

defined as:

LossCA-R =
n
∑

n=1

4
∑

c=1

α ∗ (min(0, xn,c − x̄n,c))
2 + β ∗ (min(0, x̄n,c − xn,c))

2 (5.1)

where xn,c is the ground-truth value, x̄n,c is the predicted value by the network, and c represents the

four possible axes. The CA-R regression models are also trained as an ensemble of three separate

neural networks, and their final results are averaged during inference.

A series of six CA-R ensembles were trained, partially to help identify and correct ground-

truth errors similar to the process used for the CA classifier. The first three models (versions 1,

2, and 3) were used to bootstrap a better, cleaner dataset and were discarded after the issues they

identified were fixed. The next three models (versions 4, 5, and 6) are useful to compare as they are

trained on the same underlying CA-R data. When α and β are both set to 1.0, the network’s loss is

exactly L2 and is expected to balance the errors from over-shooting against under-shooting equally.

This loss formulation is a problem, however, because it suggests that half of the predicted boxes will
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Figure 5.8: An example comparison of a Census Annotation Region output with different
training configurations for overshooting. The figure shows an example output
(right column) for the CA Region model V6 (top row) vs. V4 (bottom row) for an
input annotation (left column). The input annotations to both models are
identical. Two networks are offered to precisely predict the box on the margin
(V6) or prevent overshooting (V4). We should prefer the larger predicted CA
Region because it has less of a chance of throwing away useful information for ID.

have edges that overshoot the target offset (making the CA-R box too small, cropping out useful ID

information) and the other half will undershoot (making the box too large, increasing the likelihood

of incidental matching). Overall, the ideal CA-R model should be trained to eliminate as much

under-shooting as possible while doing very little (if any) over-shooting. The V4 model was trained

with a 4:1 ratio (quadruple the loss penalty for over-shooting, α = 4, β = 1), V5 with a ratio of 2:1

(α = 2, β = 1), and the V6 model with a 1:1 ratio (L2 norm, α = 1, β = 1). By comparing the

relative errors of each model configuration, the preferred behavior can be selected when creating

CA-R bounding boxes. Figure 5.8 shows an example of what kinds of predicted boxes the V6 and

V4 models generate.
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Figure 5.9: The regression performance curves for the Census Annotation Region component.
Left: A deviation plot of each of the four edges for each of the three models. Right:
An Intersection-Over-Union (IoU) scatter plot showing how well the predicted CA
Region overlaps with the ground-truth box. An IoU greater than 0.5 is generally
considered a correct detection with a value of 0.75 has a high degree of overlap.

Figure 5.9 (left) shows that the 3 models do a very good job at approximating the values for

x0, x1, y0, and y1. In this plot, the values that are less than 0 on the y-axis are highlighted (in

red), as this indicates a overshoot of the prediction. While the V6 predictions are mean centered at

0.0 (or 1% for x0), approximately half of its predictions are overshooting the ground-truth location

(x0 44%, x1 48%, y0 52%, and y1 48%) as expected. This is something we want to aggressively

avoid because it may remove useful information from ID curation. Model V5 was trained with

twice the penalty term for overshooting and, while its center predictions are a bit worse, it does a

better job at controlling overshooting (x0 30%, x1 39%, y0 31%, and y1 42%). The v4 model

does the worst job at predicting the margin values (off by 2 to 4%) but does an excellent job at

preventing over-shooting (x0 4%, x1 2%, y0 3%, and y1 4%).

Each CA Region model was trained as an ensemble of 3 separate neural networks, each with

different initializations. The scatter plot in Figure 5.9 (right) shows the Intersection over Union

(IoU) of the predicted boxes with the target ground-truth CA-R boxes. For detection tasks, the IoU

threshold for a true positive (TP) detection is often specified as 50%. However, the CA Region
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bounding boxes have a more vital need for precision, so the IoU threshold was required to be at

least 75%. For each model, the percentage of predictions above this IoU threshold is reported as its

accuracy. The performance of the ensemble for each model (e.g., CA V5-1.0 Ens.) is plotted

next to the individual performance of their respective ensemble members (e.g., CA V4-4.0 M0

to represent “Model index 0 within the V4 ensemble”). The V5 ensemble has one of the best

accuracies at 79% and reports a better performance than its component models (V5 M0, V5 M1, or

V5 M2). The ensemble’s averaging effect also benefits the performance of the V6 model, where it

also reports an IoU accuracy of 79%. Comparing it against the V5 model, the V6 model provides

almost identical IoU accuracy but overshoots the box size significantly less often (a reduction of

14%). These results contrast with V4, which objectively produces the worst IoU accuracy (55%)

between all models. Luckily, this drop in performance is not all that unexpected since the model

was explicitly asked to predict less accurate boxes by design. A noticeable outlier is V4 Model 0,

which scores a considerably lower IoU accuracy of only 28% and offers the lowest average IoU

across all trained models. This poor performance is most likely due to a poor initialization state

since Models 1 and 2 for that ensemble performed considerably better. Even with the worse M0

model, the V4 ensemble has an average IoU of 76%, above the required target threshold.

Since the V4 model still has reasonably good bounding box prediction (only a handful of

examples score below 50% IoU) and the amount of overshooting is considerably lower for all four

axes, it is used for the remainder of the experiments where CA-Rs are required. An immediate

question now that we can create CA-Rs automatically is, “how much easier are they for humans to

verify?” This question, when restricted to comparable pairs of annotations, is fundamentally also a

question about how much time it takes for a human to verify a match.

5.4 User Study on Human Speed and Accuracy

We need to determine if using Census Annotations in a photographic census positively impacts

a human’s ability to decide the matched pairs sent to review. Specifically, we need to know if CAs or

CA Regions 1) improve the accuracy of manual verification and 2) reduce the total amount of time it

takes to make a decision. With an automated population census, the primary goal is to minimize the

number of verification decisions needed from humans. When human work is needed, though, there

is a secondary goal of minimizing the complexity of the verification task; this is important because

we can expect that an easier decision will end up being faster, thus reducing the total on-task time

for humans. The GZCD provides a ground-truth dataset of hundreds of animal IDs, with some
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NCA-NCA Positive NCA-NCA Negative NCA-CA Positive NCA-CA Negative

CA-CA Positive CA-CA Negative CA-CAR Positive CA-CAR Negative

CAR-CAR Positive CAR-CAR Negative NCA-CAR Positive NCA-CAR Negative

Figure 5.10: Example match pairs used during the user study. The user study was designed to
test the impact of Census Annotation and Census Annotation Regions on human
verification, measuring the accuracy and time it took to review 300 total pairs.
The expectation is that a reviewer will have the most difficulty (and therefore
spend the most time) with NCA-NCA pairs and perform the best with
CAR-CAR pairs.
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of them containing relatively poor-quality annotations. The dataset is mined for pairs that range

from being easy to review (a pair between two Census Annotation Regions) to hard to review (a

matched pair between two non-CAs) to evaluate the performance of humans on reviewing pairs.

For simplicity, this section will refer to any annotation that is not a CA as a “non-CA” or “NCA”.

Furthermore, a Census Annotation will be referred to as a “CA”, like usual, and a CA Regions as a

“CAR” (without the ordinary hyphen). Match pairs between two annotations will be (conveniently)

denoted with a hyphen. For example, a “CA-CAR” pair contains one Census Annotation and one

Census Annotation Region, and the ordering does not matter. Having three possible states for an

annotation produces a combination of 6 possible pair types to collect for this user study:

• NCA-NCA - a non-CA and non-CA pair

• NCA-CA - a non-CA and CA pair

• NCA-CAR - a non-CA and CA Region pair

• CA-CA - a CA and CA pair

• CA-CAR - a CA and CA Region pair

• CAR-CAR - a CA Region and CA Region pair

For each of the six types of pairs, there are ground-truth “same animal” (positive) examples

or “different animals” (negative) examples, resulting in 12 total options for the study. To properly

sample the various combinations of pair types, all of the named annotations (10,037 total, 4,762

named CA Regions) in the GZCD (that also had an acceptable quality) were selected. This filtering

resulted in a set of 9,966 annotations and CA Regions to mine for match pairs: 1,692 NCAs, 4,142

CAs (as determined by a threshold of 0.31), and 4,142 corresponding CA-Rs. All of the
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combinations (49.6 million in total) were enumerated and were randomly shuffled. The random

collection was then traversed, and pairs were gathered for each of the 12 categories. The pair’s

category was determined by 1) the ground-truth NCA, CA, or CA-R status of its annotations and

2) a “same animal” or “different animal” decision from the ground-truth name IDs between its

annotations. The process continued until 25 examples for each category were found, generating a

total of 300 pairs. An additional constraint on the mining process required all 600 annotations (two

per pair) to be unique. Figure 5.10 shows an example for each of the 12 types. A final check was

performed by hand to ensure that none of the 300 pairs were accidentally incomparable. Each pair

was guaranteed to be decidable given enough time and subject to the expertise of the individual user

in the study.

The collection of 300 test pairs was then given to six independent reviewers. Three reviewers
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in the study are considered “experts” in reviewing pairs of Grévy’s zebra matches, each with

the real-world experience of reviewing thousands of match decisions. Three additional “novice”

reviewers were also added to the study – two with zero experience with the problem domain and

task – and functioned as a way to control for task experience. A web-based interface was created

that allows each user to annotate a “same animal” or “different animal” decision for each pair, one at

a time. The web application measured the total turn-around decision time and recorded the accuracy

of each decision. The time between decisions was not tracked (i.e., a reviewer had to request the

next match manually) and was allowed to take breaks as needed. The decisions were made blind

without indicating the correct decision and without any algorithmic hints or highlighting where

the two annotations may have matched. The users were provided with a brief training session of

approximately ten pairs to understand the task and interface and were told that exactly 50% of the

matches were “same animal,” and 50% were “different animals”. The ordering of the match pairs

was randomized between each user, and the user was instructed to make decisions at the fastest pace

possible while also making as few errors as possible.

Between the six participants in the study, some reviewers were very fast (6.1 seconds per

decision) while others were slower (15.9 seconds). The web interface was optimized with pre-

rendered images. Each user’s decisions were collected at non-overlapping times, and the webserver

used the same hardware setup for all participants. What was not controlled for was the total round-

trip travel time of the loaded web content over the Internet or the various computers, browsers,

and medium that each participant used. For example, one participant was located in the same city

as the webserver, while another was located three time zones away and in a different country at

the time of their participation. However, a constant delay experienced by a given user during the

study is expected to be somewhat reliable. All users completed their participation in the study in

less than 90 total active minutes and freely volunteered their time without financial compensation.

For transparency, the author of this dissertation and his Ph.D. advisor both participated as “expert”

users.

A user’s average decision time for all 300 decisions is subtracted from the time for each

decision to counteract the effects of any communication delay. This correction results in a global

mean of 0.0, where faster-than-average annotation pairs have a negative seconds time value and slow

pairs have positive time values. However, additional correction is needed because users became

more comfortable with the task as the study progressed. The users, especially the novice users,

were faster in their decision-making towards the end of their participation in the study than at the
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Figure 5.11: The decision times for various match pairs as seen during the user study. The
“off mean” times to complete 150 positive “same animal” and 150 negative
“different animal” match pairs (300 total). The time for an expert (top) and a
novice (bottom) are shown, with the original times (left) and the slope-corrected
times (right) displayed for both users. The positive slope for the expert’s “same
animal” decisions (red line) indicates that the user slowed down over time for
those pairs. The novice user, in contrast, grew more comfortable with the study
as it progressed and was faster for both “same animal” (negative blue line slope)
and “different animals” decisions (negative red line slope).
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start. Furthermore, it is generally easier (and therefore faster) to review negative “different animal”

pairs because not as many points of comparison are needed to prove two animals are different. For

example, once a user identifies a pattern that does not match, they quickly move on. To verify a

positive match, users tend to be a bit more careful and look for more than one point of comparison,

which takes additional time. For all of the participants – experts and novices alike – their 150

positive pair decisions were slower on average than the 150 negative pair decisions. Two lines were

then fit to the “off mean” times for positive and negative examples to correct these effects. The slope

of each line was then used to offset the individual times for each decision where the positive and

negative mean times were equal to the global mean. The plots in Figure 5.11 show the original and

corrected times for an expert (the author, top row) and a novice (bottom row). The expert was more

consistent in their review times (standard deviation 5.5 seconds), while the novice, as expected, was

more varied (σ = 11.2 seconds).

After each user’s decision times are corrected with their own unique global mean and calcu-

lated slope offsets, the relative time spent reviewing NCA-NCA, CA-CA, and CAR-CAR pairs can

be calculated and compared. Each user was shown 50 examples (25 positive, 25 negative) of each

category during the user study, randomly interlaced with the other types and combinations of pairs.

Figure 5.12 shows the off-mean times each user spent on each match pair type. We can see that

NCA-NCA pairs were significantly slower for all users than their mean decision times. On average,

each user spent 4.5 additional seconds on these pairs, indicating they were more challenging to

review. On the other hand, match decisions between CA-CA pairs were much improved and were

faster than the average by 0.8 seconds. Importantly, each user was as fast as their average decision

time with CAs or was noticeably faster. Lastly, match pairs between two CARs were substantially

faster, saving 3.0 seconds on average per decision. As for accuracy, the expert reviewers had an

average accuracy of 98% compared to the novice users, who averaged at 94.1%, with the lowest

individual accuracy of 91.7%.

Let us now consider a photographic census where only comparable annotations are used but

no other restrictions on quality are applied. Let us also assume that any human review needed during

ID curation is an unbiased collection across the 12 match pair types from above. The results from

the user study suggest that the average rate of decisions for all users is approximately 400 decisions

per hour per user and an accuracy rate of 96.1%. If we consider a photographic census constructed

out of only Census Annotation Regions, the decision throughput increases to 560 decisions per

hour, a 40% relative speed improvement. Furthermore, the study users made 71 decision errors, and
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Figure 5.12: A comparison of the decision times for each match pair type. All six users were
given 50 match examples between two non-CAs (NCAs), two Census
Annotations (CAs), and two Census Annotation Regions (CARs). The slowest
pairs to review were the non-CAs at 4.5 seconds (on average) slower than each
user’s unique mean. The fastest pairs to review were the CAR-CAR pairs, with
an average time savings of 3.0 seconds per decision.

52 of those errors were with pairs that contained at least one NCA. If NCAs are excluded from ID

curation, the number of errors made by the human verifiers would have been reduced by 73.2%.

Lastly, we can compare the match pairs on which the study users spend the least amount of total

(off mean) time against the pairs they spent the most combined time on. Figure 5.13 shows the five

fastest and five slowest pairs, which clearly shows that CAs and CA Regions are a strong indicator

for how easy and quickly annotation pairs can be reviewed by humans.

While the impact on human decision-making is vital to analyze, it is not the only photographic

censusing process that decides match pairs. Automated verifiers are used extensively during ID
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Figure 5.13: Example images of the fastest and slowest match pairs during the user study.
Out of the 300 match pairs in the user study, the five annotations that users
spent the most time on (slowest) and the five annotations that users spent the last
time (fastest) are shown. We can see that the slowest match pairs to review have
very hard to compare viewpoints and visual information that is obscured. The
fastest annotations show clearly at least one of the two comparable regions for
Grévy’s zebra Census Annotations, with two of the fastest five matches being
CAR-CAR pairs.

curation as the desired replacement for human reviewers, and the impact of CA and CA-R represents

a substantial opportunity to improve automation. Now that CA-Rs have been shown to dramatically

improve human verification performance and decision times, we need to analyze what improvements

they may have with automated match verification.

5.5 Analysis on Separability of Automated Decisions

VAMP is a verification algorithm developed by Crall [13] that decides if pairs of annotations

are one of three mutually-exclusive states: 1) “same animal” (match), 2) “different animals” (no-
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match), or 3) “cannot tell” (notcomp; representing an incomparable decision). We would like to

determine 1) how well the algorithm performs on held-out validation data with different types of

annotation pairs and 2) how separable are the score predictions between positive and negative pairs.

A collection of three VAMP models was created with the extensive ground-truth pair decisions

provided by the GZCD. Each VAMP model is a set of cross-validated random forest (RF) classifiers

trained on a fixed set of pairs mined from the animal ID database. The three VAMP models are

defined by the annotations and match pairs on which they were trained. The following models were

generated using all of the named annotations in the GZCD ID database (for a range of qualities):

1. Named Annotations - 20,046 pairs for 5,281 annots.

2. Census Annotations - 14,493 pairs for 4,142 annots.

3. CA Regions - 14,320 pairs for 4,142 annots.

Each model was validated for a fixed False-Positive Rate (FPR) of 1% and automated

decision thresholds for match (same animal) and nomatch (different animals) were selected.

Encouragingly, the “Named Annotations” VAMP model performed similarly to previous Grévy’s

zebra VAMP models trained on past censusing events for that species and used match/nomatch

decision thresholds of 0.8062 and 0.8538, respectfully. These thresholds are used, for example, in

the Graph ID algorithm to decide if a given annotation pair can be automatically reviewed. For

comparison, a VAMP model trained on good-quality right-side Grévy’s zebra annotations during

the GGR-18 used thresholds of 0.7732 and 0.8605, respectively. In cross-validation, the model

automatically decided 15,921 out of 20,046 of the pairs (79.4% automation). For match decisions,

the model correctly decided 7,294 out of 8,717 pairs (84%) and 7884 out of 10460 nomatch

decisions (75%). Since these annotations include non-CAs, the model predicts a third option for

“notcomp” (an incomparable match). With a simple threshold of 50% (due to low relative volume of

examples), the model automatically classified 355 out of 869 pairs (41% automated) but made 181

errors in the process (FPR 34%).

The CA and CA Region VAMP models were trained on fewer ground-truth pairs (14,493)

than the “Named Annotations” model. However, this is an expected reduction as the total number of

annotations decreased significantly from 5,281 to 4,142. The average number of reviews per CA is

lower at 3.5 compared to the global mean of 3.8 reviews. The CA VAMP model was also configured

to optimize for an FPR of 1% during cross-validation and has a much lower match automatic

decision threshold. The model uses 0.6291 and 0.8695 for match/nomatch decisions and was



150

Table 5.1: The VAMP decision thresholds for three different sets of annotations. Three
separate VAMP models were trained: 1) Named Annotations, 2) Census
Annotations (CA), and 3) Census Annotation Regions (CA-R). The CA Region
model performs the best and offers the highest degree of automation as it provides
the cleanest version of each annotation for visual comparison.

match nomatch

Model Threshold Threshold Automation
Named [FPR] 0.8062 0.8538 79.4%
CA [FPR] 0.6291 0.8695 89.8%
CA-R [FPR] 0.5305 0.8496 94.6%
CA-R [MCC] 0.5000 0.5513 99.0%

able to automate 13,014 out of 14,493 decisions (89.8% automated) in total. This increased level of

automation is not surprising as the VAMP model is only being given annotations that should be

confidently decidable, as per the design of Census Annotations. The level of automation allows for

6,069 out of 6,540 match decisions to be automated (93%) and 6,801 out of 7,848 for nomatch

(87%).

The CA-R VAMP model is expected to be the most discriminative at its task and, therefore,

should achieve the highest levels of automation. No changes to the underlying name IDs or the

number of total pairs for training were made compared to the previous CA VAMP model. The

only change made was using the more focused bounding boxes around the identifying information

for the Grévy’s zebra and training VAMP on only those regions. The assumption here is that if a

human reviewer decided a CA-CA annotation pair as “same animal”, its associated CA-R to CA-R

pair should inherit the same ground-truth decision. Unfortunately, this process could not work

for all ground-truth human decisions, as 173 incomparable decisions could not be inherited. Any

incomparable match decisions were intentionally left out of training as they represented only 1.2%

of the match pairs. The resulting VAMP model for CA Regions, as expected, performs very well.

Automated thresholds were selected for match and nomatch at 0.5305 and 0.8496, again using a

FPR of 1%. This model allowed for automated decisions for 13,552 out of 14,320 pairs (94.6%

automation). For match decisions, 6,236 out of 6,461 of the pairs were automatically decided,

an outstanding level of automation at 97%. Likewise for nomatch, the model was able to decide

7,173 out of 7,753 pairs (93%). A summary of all three models, their decision thresholds, and their

levels of automation can be seen in Table 5.1.
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Furthermore, suppose the best CA Region VAMP model’s thresholds are selected to optimize

the classification task’s Matthews Correlation Coefficient (MCC). In that case, the thresholds can

be lowered even further to 0.5 (the lowest allowed) for match and 0.5513 for nomatch. These

thresholds result in more errors overall and a higher level of automation as 14,182 out of 14,320

pairs are automatically decided (99.0%). To achieve this level of automation, 90 out of 6,340 (1.4%)

match decisions are made incorrectly while 230 out of 7,842 (2.9%) nomatch decisions are

incorrect (total FPR of 2.3%). For comparison, the “Named Annotation” model can also be tuned

with the MCC to automate 96.9% of decisions but unfortunately has an overall FPR of 6.3% (5%

for match and 7% for nomatch).

In summary, the ability of the CA Region VAMP model to quickly and accurately classify

pairs reduces the need for human review during a photographic census. However, even with highly

accurate automated verifiers, incidental matching can still be a problem for photographic censusing.

The hope is that using Census Annotation Regions drastically reduces the number of inappropriate

matches between annotations, which we will explore next.

5.6 Impact on Incidental Matching

As discussed in Chapter 4, the matching scenarios that are a significant source of error – and

require human-in-the-loop review – are photobombs, mother-foal matches, and scenery matches.

The problem is that automated matching between two annotations can sometimes be incorrect

and match inappropriate visual information. Furthermore, incidental matching makes it difficult

to accurately separate the rankings between true positives and negatives, hindering our ability to

use decision thresholds. For example, scores for photobombs are hard to distinguish from correct

matches because the ranking algorithm is correctly finding corresponding visual information. The

solution to this problem is to remove the ability for distracting background information to match in

the first place. Census Annotation Regions help mitigate the effects of incidental matching because

it actively reduces the information within an annotation to only what is used to compare and contrast

two annotations.

The GZCD contains many animal IDs and offers an extensive collection of match decisions

made by hand; out of 43,048 human reviews, 1,540 were marked as explicitly showing a photobomb,

and 1,007 pairs were labeled as a scenery match. Unfortunately, ground-truth match data on mother-

foal photobombs were not collected during the ID curation of GZCD. However, this chapter’s

remaining discussion provides examples of mother-foal errors by the LCA algorithm and analyzes
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the positive impact of using Census Annotation Regions for ID curation.

5.6.1 Photobombs

The GZCD ground-truth match decisions contain 1,540 photobomb pairs, with 239 pairs

containing the same ground-truth ID (positive pairs) and 1,301 showing different animals (negative

pairs). We would expect the vast majority of photobomb pairs to be negative decisions – indeed, it is

84.5% of the pairs – but it is not exclusively negative match decisions. For example, two annotations

could have matched from a more distinctive background animal, but the primary animal in both

annotations is the same individual. The candidate set of annotations was filtered to compare the

Quality Baseline (defined in Section 5.7) set from previous sections to the set of CAs and their CA

Regions. The Quality Baseline concerns 764 photobomb pairs, while the two CA algorithms filter

out some of those to keep 592.

Figure 5.14 (left) shows the VAMP confidence scores for positive and negative ground-truth

pairs. The scores are displayed and separated randomly on a scatter plot simply for easier viewing.

It is clear from looking at the quality baseline for “different animals” that there is extreme confusion.

The average VAMP score for these negative pairs is 43±26% and appears to be fairly uniform.

Likewise, the Census Annotation scores are not better for “different animals” with practically the

same average of 43±27%. However, for CA Regions, the VAMP scores are much lower with

an average of 15±25% and are clustered closer together. The positive “same animal” examples

improve slightly from 82±23% with the Quality Baseline to 89±18% but improve by over 10

points to 93±25% with Census Annotation Regions. By setting a decision threshold at 50% for

VAMP, the Quality Baseline would classify 64.7% of the pairs correctly, CA with 63.5%, and CA

Regions at 88.3% accurate. Picking an optimal operating threshold that maximizes all accuracy for

each annotation set yields: Quality Baseline (OP 89%, accuracy 91.1%), CA (OP 94%, accuracy

92.1%), CA Region (OP 86%, accuracy 95.8%). These results indicate that photobomb cases are

1) significantly reduced in quantity by CA filtering and 2) substantially easier to classify correctly

when Census Annotation Regions are compared.

A real-world example is provided in Figure 5.15. The original images (yellow border) with

all annotations and the highlighted annotation (blue border) are matched visually. The annotations

are both Census Annotations (red) but still result in a photobomb because the matched area (red

circles) is likely to cause an incorrect “same animal” decision. Instead, when the Census Annotation

Regions (green borders) are used, the photobombing annotation is removed from the bounding box
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Figure 5.14: A scatter plot of the VAMP scores and their separability for three datasets. The
benefit of using Census Annotation Regions over traditional annotations is that
it limits the area that is matching to only the identifying information on the body
of the animal, decreasing the chance of a photobomb (left) and scenery match
(right). The separability of photobomb match scores dramatically improves
when Census Annotation Regions (bottom section) are used, with positive pairs
scoring 93% and negative pairs scoring 15% on average. Scenery matches also
see a dramatic improvement, with positive CA-R pairs scoring 96% and negative
pairs scoring 11%.

and cannot be matched. The CA VAMP model classifies the photobomb CA pair as 89% positive

(match) whereas the CA Region VAMP model run on the CA Region pair predicts 94% negative

(nomatch). This example shows that CA alone is insufficient to catch all photobomb errors and

provides an example of why a perfect detection – that captures the tail in its full detail – is the

wrong decision for automating a photographic census with visual ID.

5.6.1.1 Mother-Foals

The human decisions collected by the GZCD did not require explicit labels for mother-foal

photobombs when encountered. When the LCA algorithm was used to identify ground-truth ID
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Figure 5.15: An example of a photobomb match that is mitigated by using Census Annotation
Regions. The original images (yellow border) with all of the annotations and the
highlighted annotation (blue border) matched visually. The annotations are both
Census Annotations (red) but still result in a photobomb (red). The matched
area (red circles) leads to a likely false positive by an automated classifier. Using
the Census Annotation Region (green) shows that the background annotation is
removed from visual matching.

errors, however, four animal IDs were found that contained annotations for both a mother and its

foal. This type of ID error indicates that – at some point during ID curation – the annotations for

the mother and foal were the subject of incidental matching, and their IDs were incorrectly merged.

An example of one of these four ID errors is shown in Figure 5.16. We can see that the Census

Annotation Regions for the foal and mother overlap significantly. All annotations for the incorrect

animal ID are reviewed by hand to separate which annotations show the foal and which show the

mother, generating two new animal IDs as the fix.

To fundamentally mitigate mother-foals photobombs, more advanced and nuanced approaches

are needed. While these techniques are not evaluated here, using an annotation age classifier or an

instance segmentation algorithm will help separate highly overlapping sightings like these. However,
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Figure 5.16: An example mother-foal photobomb that was found during the ID curation of
the GZCD. The Census Annotation Regions for a foal and mother overlap
significantly and are subsequently incorrectly matched. All of the annotations
for the merged animal ID are reviewed to separate which annotations show the
foal or the mother.

these methods are not evaluated because the relative frequency of mother-foal photobombs seems to

be low (four compared to many dozen identified photobombs during the ID curation of the GZCD)

when CA-Rs are used for censusing. In addition, more complex segmentation algorithms will place

a high burden on annotating ground-truth pixel data. In contrast, the impact of scenery matches can

be evaluated without more specialized methods and will be discussed next.

5.6.2 Scenery Matches

The GZCD data contains 1,007 scenery match pairs, with 522 pairs containing the same

ground-truth ID (positive pairs) and 458 showing different animals (negative pairs). Since scenery

matches are much more random and can happen irrespective of if the match is the same animal or

not, a roughly even split is expected (52% actual). Scenery matches happen most often when the

photographer(s) take pictures within seconds of each other and without moving the camera’s field

of view, allowing for the background scene to repeat across images. The annotations were filtered

based on the Quality Baseline, using 815 scenery match examples and 717 annotations for the CA

algorithms.

As we can see in Figure 5.14 (right), the 417 “same animal” examples for the Quality Baseline
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are clustered and classified reasonably well with an average prediction of 92±15%. Using Census

Annotations improves the classification accuracy slightly to 94±13% and even better with Census

Annotation Regions to 96±12%. Using the Census Annotations improves positive matches when

scenery matches are present, but this case is not where most of the errors originate. The “different

animals” matches for the Quality Baseline are much more spread out with an average VAMP score

of 33±24% and matches the Census Annotation scores at 32±24%. As with photobombs, this

is not a surprising failure of the Census Annotation classifier by itself. Moreover, the number

of CAs does not decrease significantly from the Quality Baseline to the CA set, considering the

relative matchability of the background textures is separate and independent from the comparability

of the foreground animal. However, Census Annotation Regions significantly improve negative

match separability with an average VAMP score of 11±20%. By repeating the exercise from the

photobomb discussion and using a decision threshold of 50%, the Quality Baseline achieves an

accuracy of 86.5%, 87.9% for Census Annotation accuracy, and 94.7% for Census Annotation

Regions. Picking an optimal operating threshold that maximizes all accuracy for each annotation set

yields: Quality Baseline (OP 83%, accuracy 91.2), CA (OP 72%, accuracy 92.9%), CA Region (OP

71%, accuracy 96.5%). These results indicate that scenery matches cases are 1) not significantly

reduced in quantity by CA filtering but 2) are significantly easier to classify correctly with Census

Annotation Regions.

Lastly, we wish to put all of these preceding Census Annotation results together to simulate its

impact on human decision-making. The use of CA and CA-Rs has been shown to improve the speed

of human verification, the separability of automated decisions, and reduce the impact of incidental

matching. Thus, the next and final section shows how using CA and CA-Rs with photographic

censusing results in a similar population estimate while requiring a lot less work from humans.

5.7 Population Estimate Simulations

The primary motivation of Census Annotations and Census Annotation Regions is to improve

the automation of a photographic census. The discussion has demonstrated that 1) humans spend

less time reviewing pairs of CAs and CA-Rs, 2) the scores of the VAMP automated verifier are

more separable for CAs and CA-Rs than non-CAs, and 3) the frequency of incidental matching is

significantly reduced with smaller CA-R bounding boxes. We still need to determine if CA and

CA-R significantly reduce the number of required human decisions and if this reduction in effort

causes any loss of accuracy in the final population estimate. Human effort is an important metric to
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Table 5.2: The number of annotations, names, singletons for three ID evaluation sets and
their GGR-16 and GGR-18 Lincoln-Petersen indices. The “Quality Baseline” set is
a traditional filter on species, viewpoint, and quality. In contrast, the Census
Annotation (CA) and Census Annotation Region (CA-R) annotation sets (identical
numbers below) rely on using a more focused definition of comparability.

Set Name Annots. Names Singletons GGR-16 L-P GGR-18 L-P
CA-R 4,142 468 51 366±27 373±29
CA 4,142 468 51 366±27 373±29
Quality 4,269 487 62 360±27 399±29

track because it directly measures how feasible photographic censusing will be for real-world use

and is a consistent method for comparing algorithm configurations. Furthermore, the discussion in

Chapter 4 gave examples of why automated machine learning algorithms introduce errors and how

a more comprehensive review can mitigate them – directly associating an increase in accuracy with

an increase in work. Therefore, we can expect that different algorithms, which may be susceptible

to different failure methods, can meaningfully influence the accuracy of a population estimate by

changing the total amount of human interaction needed. This section simulates various photographic

censusing configurations and analyzes their respective accuracy as a function of automation. The

simulations use the ground-truth ID data from the GZCD and demonstrate that CA and CA-R reduce

the need for human involvement while also producing consistent population estimates.

Before we begin, let us review how the GZCD was constructed (see Section 5.1 for a full

description) because it will be the source of ID data for the following simulations. The ID database

was built from two sets of annotations: 1) annotations that passed a “species, viewpoint, quality”

filter and 2) annotations that were above a specific CA classification score (0.001). The purpose of

combining these two sets was that it provided an extensive collection of easy and hard annotation

matches and a real-world example of animal sightings. The first collection used the ground-truth

labels for species (Grévy’s zebra), viewpoint (any viewpoint that contained right, and quality (ok or

better) as its filter; these annotations will be referred to as the “Quality Baseline” set for simulation.

This set of annotations is critical to distinguish as a comparative baseline because it is representative

of the annotation filtering methods used in prior photographic censusing studies (see [2], [356],

and [357]). The annotations that scored above a Census Annotation (CA) threshold of 31% (the

recommended value for Grévy’s zebra) were selected as the second evaluation set for simulation.

Furthermore, each of these CAs were hand-annotated with ground-truth Census Annotation Regions
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(CA-R), which formed the simulation’s third evaluation set of annotations. In summary, the “Quality

Baseline” set has 4,269 annotations for 487 IDs (62 singletons), and the CA and CA-R sets have

4,142 annotations for 468 IDs (51 singletons). Table 5.2 shows a side-by-side comparison of the

three sets that will be used for all simulations below. The reason the number of ground-truth IDs

between these sets is different is quite simple: their respective IDs are generated from slightly

different sets and quantities of annotations. For example, half of the difference in the number of IDs

is due to singletons, where there are 11 additional singletons in the “Quality Baseline” set compared

to the CA and CA-R sets.

Since photographic censusing relies on sampling, the exact number of ground-truth IDs is

not very meaningful for a direct comparison. A better way to contrast different simulated animal

ID curation results is to examine the differences in their respective Lincoln-Petersen population

estimates. Recall that the GZCD was constructed with images taken in Meru County, Kenya during

the Great Grévy’s Rally (GGR) photographic censusing events in 2016 (GGR-16) and 2018 (GGR-

18). The GZCD is a useful dataset for simulating ID curation approaches because it offers two

ground-truth population estimates: one for 2016 and a second independent one for 2018. Reviewing

the values in Table 5.2, the Lincoln-Petersen index for the “Quality Baseline” is 360±27 in 2016

and 399±29 for 2018. The population estimate based on only Census Annotations was 366±27

for GGR 2016 and 373±29 for GGR 2018. Finally, simulations with Census Annotation Regions

estimate 366±27 zebra were within Meru County in 2016 and 373±29 animals in 2018. These

values will function as the “targets” for each of the following simulations, conditioned on their input

annotation set.

5.7.1 Which Annotations to Select

Six photographic census events were simulated to measure the impact of how annotations

are selected: the Graph ID and LCA algorithms were simulated on the three annotation sets,

respectively. All of the simulations in this sub-section used HotSpotter for the ranking algorithm

and VAMP as the automated verifier. Each decision management algorithm was provided with the

same underlying ranked list from HotSpotter. Hotspotter was configured to use K = 5, Knorm = 5,

and had spatial verification turned on (as recommended by [13] for Grévy’s zebra). These values

control the number of Approximate Nearest Neighbor matches returned for each SIFT keypoint

and determine how to normalize their respective match scores. Furthermore, the ranked list was

configured to return the 10 highest-scoring annotations (ntop = 10) for each sighting. The “Quality
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Figure 5.17: The simulated population estimates over 4,000 human decisions. Simulated
Lincoln-Petersen population estimates are shown on the y-axis against the
number of human decisions were requested on the x-axis. The estimates for
GGR-16 (left) and GGR-18 (right) are shown for three sets and with two
separate graph curation algorithms.

Baseline” set used 27,075 pairs from HotSpotter’s LNBNN ranking algorithm, and the CA and

CA-R sets were provided with 25,831 ranked pairs. When LCA received these pairs, it re-scored

them with its internal weighting function (i.e., the “weighter”) and predicted 17,862 positive edges

for the “Quality Baseline” set, 17,205 for the CAs, and 17,749 for CA Regions. Each of the LCA

weighters was initialized using a VAMP [13] model that was trained for each set independently

and used the scores for 1,000 randomly sampled “same animal” and 1,000 “different animals”

ground-truth decision pairs. The LCA simulations were allowed to run to convergence (configured

with a minimum delta convergence multiplier of 1.5 and minimum delta stability ratio of 4), but the

Graph ID algorithm (configured for a positive redundancy of 2 and a negative redundancy of 1) was

stopped prematurely after 20,000 human decisions were requested.

When a human decision was needed during the simulation, the decision was obtained by

querying a perfect human oracle (i.e., 100% accuracy) that inferred the correct answer from the
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ground-truth IDs. The oracle made perfect decisions because the goal here is to compare methods

of annotation selection without needing to worry about randomness introduced by a fallible human

reviewer; later experiments will examine the impact of human error in the ID curation process.

Both decision management algorithms started with fresh initialization states and were not given

information about previous pair decisions used to create the ID dataset. Each algorithm, however,

was free to request as many automated and human pair decisions as it wanted during its ID curation.

Each time a human decision was requested, the current state of the algorithm’s population estimate

was recorded. A log included the current number of IDs in the simulation’s database, what the

GGR-16 and GGR-18 population estimates were at that moment, and the number of total automated

reviews requested since the start of that simulation run. Figure 5.17 shows the GGR-16 (left) and

GGR-18 (right) population estimates for the GZCD as a function of human decisions. Note that a

fluctuating and an indeterminate number of automated reviews may have been requested between

subsequent human reviews, which is not plotted.

The format of the plot in Figure 5.17 is something this discussion will rely on extensively,

so it is essential to understand what is being displayed and compared. Fundamentally, the figure

shows the population estimate (y-axis) as calculated in real-time after every human decision (x-axis)

that was requested by a given curation configuration. The pink dashed lines on both plots represent

the “Quality Baseline” annotation set and its associated population estimate. The dashed blue lines

represent the population estimates calculated using the CA and CA-R annotation sets. Thus, the

dashed lines represent the target that each simulation is trying to approximate. For example, the

GGR-18 simulations on CA annotations should ideally produce 373 individuals, as indicated by the

dark blue dashed line.

Something we must consider is how consistent the ground-truth population estimates are

for a given input. The GGR-16 Lincoln-Petersen index using any of the three annotation sets is

approximately 360 or 366, a spread of less than 2%. The GGR-18 estimates are farther apart but are

still relatively close (off by 26). The ground-truth estimates with the CA and CA-R annotations

are 373 IDs, while the “Quality Baseline” estimated 399 animal IDs (7% spread). While the

population’s actual number is unknown for both years, the GZCD has 350 ground-truth IDs for

2016. If we were to consider the actual value of 366 (i.e., halfway between the two estimates), it

implies that approximately 96% of the surveyed animal population was seen. A high percentage of

ID coverage indicates that the photographers thoroughly saturated the survey area and produced a

highly representative sampling of its population. The effect is that the confidence intervals (95%)
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for the ground-truth population estimates are relatively compact (less than ±30 IDs). Likewise,

the ID database has 367 ground-truth IDs for 2018; if the actual size of IDs was 386, then the

photographers sampled around 95% of the population. Furthermore, these coverage percentages are

very high, and the number of resightings between day 1 and day 2 is also very high (approximately

220 for GGR-16 and 195 for GGR-18). The takeaway is that while the actual number of animals is

unknown, all simulations’ confidence intervals overlap in their respective target population estimates

and confidence intervals.

Focusing on the Graph ID performance curves for GGR-16 and GGR-18, we can see the

excellent filtering effect of CA (dark blue line) vs. the “Quality Baseline” (magenta). For the GGR-

16 results, the baseline algorithm asymptotically approaches the correct number at around 2,500

human reviews, while the CA curve shows a 20% savings in the number of human reviews. The

quality baseline estimate is precisely correct and predicts 360 individuals, while the CA prediction

of 361 under-estimates its target of 366 by 1.4%. Likewise, the GGR-18 results show a similar

savings of roughly 20%, but the accuracy improves slightly (1% error with quality to 0.3% error

for CA) when comparing against their respective targets. This result indicates that using Census

Annotation alone as a high-level classifier can speed up the convergence of the Graph ID algorithm

while not sacrificing any meaningful accuracy in the estimate. Comparing these results to using the

Graph ID algorithm (and corresponding VAMP model) on Census Annotation Regions shows an

even more drastic reduction in the number of human reviews. The algorithm converges at around

700 human decisions (a reduction of over 70% compared to the Quality baseline) and ends up being

incorrect in its estimate by only 1.9%. The story for GGR-18 is similar as it also concludes at

roughly the same number of reviews but does under-estimate the number of animals by 4.0% (15

names). It is reasonable to expect that being off by less than 5% is acceptable for this application,

especially since any bias from machine learning algorithms has not been accounted for yet. It would

seem that 5% is well within the margin of error since the confidence interval is larger at around

7%. The Graph ID algorithm better approximates the ground-truth estimate (1% error) for GGR-18

when it uses the quality baseline.

Next is a review of the LCA algorithm simulation results. By design, LCA is focused on

delaying human decision-making as much as possible. As a result, it can accurately approximate

the population estimate with significantly fewer reviews than Graph ID but requires more up-front

processing. This trend is visible in Figure 5.17, as the green and red LCA lines end (where the

algorithm converged) at a much lower value on the x-axis compared to the blue and magenta Graph
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Figure 5.18: The simulated population estimates over 500 human decisions. Simulated
Lincoln-Petersen population estimates are shown on the y-axis against the
number of human decisions were requested on the x-axis. The estimates for
GGR-16 (left) and GGR-18 (right) are shown for three sets and with two
separate graph curation algorithms.

ID lines. To better continue the analysis on LCA, a re-scaled copy of Figure 5.17 is provided in

Figure 5.18. This second plot shows the same data but has an x-axis covering the range [1, 500]

human reviews, which better displays the differences between the three LCA simulations. The LCA

algorithm on the Quality Baseline set (green line), as expected, took the most number of human

reviews (420) to converge. Because LCA does not explicitly require consistency and makes better

use of the automated verifier, it can finish with much less human involvement than the Graph ID

algorithm. However, the LCA algorithm does under-estimate the target value by 3.3% (12 names)

for GGR-16. Switching to using LCA on Census Annotations gives a final estimate within 3.8%

of the ground-truth value but saves 68 human reviews (16% reduction). The Census Annotation

estimate also under-shoots the correct value by approximately 3.5%, consistent with the baseline

error. This result means that using Census Annotations as a classifier only decreases the relative

accuracy by 0.5%. Just as with the Graph ID algorithm, the LCA algorithm drastically improves
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Figure 5.19: The simulated population estimates across different Census Annotation
thresholds. Simulated Lincoln-Petersen population estimates are shown on the
y-axis against the number of human decisions were requested on the x-axis. The
estimates for GGR-16 (left) and GGR-18 (right) are shown for three different
sets of Census Annotation Regions, selected with thresholds at 1%, 31%
(recommended), and 90%.

automation when Census Annotation Regions are used. The number of required human reviews

for the most automated decision management algorithm configuration was only 120 in total and is

accurate within 4.6% on GGR-16 data (predicting 349 animals against a ground-truth value of 366).

The results for GGR-18 mirror the narrative from the GGR-16 results, with LCA run on Census

Annotation Regions predicting the correct answer within 0.5% (under-shooting by two names). The

Quality Baseline LCA results were off by only one name but ended up needing nearly four times

the number of human reviews.

5.7.1.1 Census Annotation Decision Thresholds

We also can quickly consider what would happen when the Census Annotation thresholds

are changed from the recommended 31% to lower and higher values. If the filtering threshold is

lowered to 1%, the number of used annotations will increase but for the added risk of incomparable
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and incidental matches. As we have established, these errors will result in more overall work and

likely bias the estimate higher. On the other hand, a high filtering threshold of 90% will provide

very clean and comparable animal sightings to animal ID curation, making it much more likely to

miss a relevant animal sighting. Figure 5.19 shows the simulations for these two cases with the LCA

algorithm and CA-Rs as the input data. We can see that the 1% population estimates for GGR-16

and GGR-18 (red line) require much more work to converge, and the algorithm achieves a worse

result. Likewise, using a very high CA filtering threshold of 90% (blue line) does not increase work

compared to the recommended 31% (green line) and under-shoots the target by 7.8% for GGR-18.

That being said, the simulated value is still within the confidence interval for those two populations.

In summary, Census Annotation – and more specifically Census Annotation Regions – is a

powerful tool for increasing automation through effective filtering. Furthermore, this improvement

can be seen with two entirely different decision management algorithms. For example, comparing

LCA on Census Annotation Regions to Graph ID on the “Quality Baseline”, the latter required over

2,500 reviews to closely approximate the target estimate (and over 10,000 reviews to get within 1%

on GGR-18). In contrast, LCA with CA-R required only 120 human decisions to get within 5% of

the ground-truth estimate on GGR-16 and 0.5% for GGR-18. We can also see that photographic

censusing is somewhat sensitive to how well Census Annotations are filtered. Therefore, we want

to remove annotations that cause errors and include as many annotations as possible for accurate

estimates. When the CA filtering was at 90%, the estimate decreased. This decrease seems to

defy the conclusions of Equation (4.21); the problem is that the threshold is putting pressure on

Assumptions 3 and 4 (see Section 4.3.1), and the estimate is therefore not reliable. Next, we compare

how much of the overall ID curation work each decision management algorithm is automating with

algorithmic verifiers.

5.7.2 Degree of Decision Automation

During each of the six simulations from the previous sub-section, the total number of requested

VAMP decisions were recorded after each human decision. Each simulation used HotSpotter as

the ranker and VAMP as the verifier but varied on their input annotation sets and the decision

management algorithm used. We can contrast the total number of automated verification decisions

requested to cross-examine how much of the overall ID curation process was automated. For

example, it was shown earlier in this chapter that VAMP automates a higher percentage of decisions

(for a fixed FPR) when Census Annotation and Census Annotation Regions are used. Allowing
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VAMP to perform more of the overall ID curation work implies that the process also requires less

work from a human reviewer.

For the Graph ID simulations, the algorithm either converged or was prematurely stopped

after 20,000 human decisions. Even though the algorithm had not officially converged, that does

not mean it was not closely approximating the target estimate well before its termination. For each

Graph ID simulation, there is a distinct point where the algorithm approximately converges, and it is

helpful to track this point for comparison. For the Quality Baseline set, this point is at 2,414 human

reviews; for the CA set, it is at 1,923 reviews; and for the CA Regions, it is at 642 reviews. If the

Graph ID algorithm were stopped prematurely at each of these junctures, the predicted estimates

would have all been within 5% correct. Another way to consider the work done by an automated

verifier is to cap its total number of decisions. For example, pretend that the automated verifier was

very slow, much slower than a human, or was computationally expensive. In that case, we may want

to consider placing a budget on the total number of automated decisions before terminating. For

example, a fixed budget of 5,000 automated reviews would mean that each annotation in the three

evaluation sets participates in at least two reviews on average. Table 5.3 provides a breakdown for

the number of human and VAMP decisions that were needed for each annotation set and decision

management algorithm. For the Graph ID algorithm, the table offers the termination points at

20,000 decisions, points where the correct value is approximated, and early-stopping points based

on a strictly enforced budget.

The results show that using Census Annotation Regions improves the rate of automation

compared to the Quality Baseline. For example, the Graph ID algorithm converged (terminated at

20,000 human reviews) with 50.5% of the total reviews being automatically decided by VAMP. In

contrast, Graph ID on CA Regions automated a total of 52.5% of the reviews, a savings of 1,714

reviews. In addition, VAMP is doing more work overall on Census Annotation Regions as there are

5.3 decisions per annotation on average compared to 4.8 for the Quality Baseline. For the Quality

Baseline, the VAMP model was able to automate 12,988 reviews, with an automation rate of 84.2%

The Census Annotation, while requiring approximately the same number of overall reviews as the

baseline set (15,402 vs. 15,110, a difference of less than 2%), required significantly fewer human

reviews at 1,923 and an automation rate of 87.3%. Thus, using Census Annotations saved the human

reviewers from needing to complete nearly 500 reviews, a 20.3% reduction. Going a step further,

Census Annotation Regions require only 5,553 total reviews to approximate the estimate, with only

642 being done by a human. Compared to using Graph ID on the Quality Baseline set, using CA
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Table 5.3: The amount of work done by the automated verifier reduces the number of human
reviews. For the Graph ID algorithm, a simulation was considered converged when
the number of requested human reviews exceeded 20,000. The average number of
VAMP reviews per annotation in parenthesis is below the number of VAMP
Reviews. We can see that using LCA on CA Regions results in the lowest number
of human decisions.

Algorithm Set Annotations VAMP Human Total Automation
Reviews Reviews Reviews Rate

Graph ID Quality 4,269 20,374 20,000 40,374 50.5%
Converged Baseline (4.8)
Graph ID CA 4,142 19,055 20,000 39,055 48.8%
Converged (4.6)
Graph ID CA 4,142 22,088 20,000 42,088 52.5%
Converged Region (5.3)

Graph ID Quality 4,269 12,988 2,414 15,402 84.3%
Approximated Baseline (3.0)
Graph ID CA 4,142 13,187 1,923 15,110 87.3%
Approximated (3.2)
Graph ID CA 4,142 4,911 642 5,553 88.4%
Approximated Region (1.2)

Graph ID Quality 4,269 5,000 2,255 7,255 68.9%
Budgeted Baseline (1.2)
Graph ID CA 4,142 5,000 1,747 6,747 74.1%
Budgeted (1.2)
Graph ID CA 4,142 5,000 645 5,645 88.6%
Budgeted Region (1.2)

LCA Quality 4,269 22,552 420 22,972 98.2%
Converged Baseline (5.3)
LCA CA 4,142 18,255 352 18,607 98.1%
Converged (4.4)
LCA CA 4,142 13,307 120 13,427 99.1%
Converged Region (3.2)

LCA Quality 4,269 5,000 121 5,121 97.6%
Budgeted Baseline (1.2)
LCA CA 4,142 5,000 92 5,092 98.2%
Budgeted (1.2)
LCA CA 4,142 5,000 63 5,063 98.8%
Budgeted Region (1.2)
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Region with the same algorithm results in a 73.4% reduction in human work.

Furthermore, the LCA algorithm with the Quality Baseline set is highly automated. In total, it

makes 22,972 decisions and asks for only 420 of those from a human (automation rate of 98.2%).

The LCA algorithm is designed to try alternative clustering of the current ID graph, which calls for

an automated or human decision. The algorithm’s degree of confidence in a particular clustering can

be partially seen in how many reviews are requested before the algorithm converges. This behavior

means that the algorithm will converge faster if the decisions are coherent, the annotations are

discriminative, and the edge weights are stable. For example, the LCA algorithm converges faster

with Census Annotations with a total number of reviews of 18,607 (automation rate of 98.1%); the

algorithm can converge with 4.4 decisions per annotation compared to 5.3 with the quality baseline,

indicating that the former was more discriminate and required fewer alternative clusterings. The CA

Regions shows a dramatic reduction in the number of total reviews at 13,427 while only requiring

120 from a human (99.1% automated). This result represents a 71.4% reduction in human work and

an even lighter workload at 3.2 decisions per annotation.

Considering a budget restriction with the Quality Baseline set, the Graph ID algorithm only

automated 68.9% of the reviews. In contrast, using Census Annotation automates 74.1%, and

using Census Annotation Regions achieves a rate of 88.6%. A similar – albeit less dramatic –

improvement in automation occurs using the LCA algorithm; using CA Regions and a budget cuts

the number of human decisions in half (to 63) compared to the Quality Baseline of 121. In summary,

these results indicate that Census Annotation Regions improve automation for both the Graph ID

and LCA decision management algorithms. Furthermore, LCA can make much more efficient use

of the automated verifier than Graph ID.

5.7.3 Comparison of Automated Ranker & Verifier

We next consider the impact that different ranking and verification algorithms have on

photographic censusing. As discussed in Chapters 2 and 4, the HotSpotter algorithm was developed

alongside the detection pipeline presented here, the VAMP verifier, and the Graph ID decision

management algorithm for the problem of estimating Grévy’s zebra populations. Therefore, it

is apparent and unsurprising that most of the photographic censusing analysis presented in this

dissertation relies on it heavily. This preference is due to 1) its ability to match sightings without

any species-specific training, 2) it does not rely on extensive ground-truth ID data to bootstrap,

and 3) it is fast to produce accurate results. For similar reasons, the VAMP verifier is used thus
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Figure 5.20: The simulated population estimates with different ranking and verification
algorithms. Simulated Lincoln-Petersen population estimates are shown on the
y-axis against the number of human decisions were requested on the x-axis. The
estimates for GGR-16 (left) and GGR-18 (right) are shown for different ranking
and verification algorithms.
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far to automate human decision-making for Grévy’s zebra. Even though both approaches are the

presumed defaults, they are not the only options available for the automated ranking and verification

tasks. Specifically, the PIE [263] algorithm can be trained to perform both tasks (ranking and

verification) as a triplet-loss neural network.

The PIE algorithm is helpful to photographic censusing for many reasons: 1) it has a superior

feature extraction process compared to HotSpotter (which is based on the outdated SIFT algorithm),

2) it is exceedingly fast (and supports GPU acceleration during training and inference), and 3) it is

highly accurate for known, consistent poses of an animal (e.g., a right-facing Census Annotation

Region). Furthermore, the PIE algorithm produces a single, fixed-length feature vector per annota-

tion, which can be quickly computed, cached, and compared in L2 space for fast matching (e.g.,

clustering with approximate nearest neighbors) and verification (e.g., a distance threshold). The

downside is that PIE requires an existing ID database to train and cannot be bootstrapped without

prior IDs. After building a relatively large ID dataset like GZCD with HotSpotter, however, PIE can

be trained to perform accurate matching and verification. The model can also be used to identify

ground-truth ID errors that HotSpotter was unable to recognize, improving the reliability of the ID

database and providing even better data for re-training the PIE algorithm.

With CA-R for input annotations, HotSpotter for ranking, VAMP for verifying, PIE for

ranking and verifying, LCA for curation, simulated humans for verifying, and Lincoln-Petersen for

estimating the population, we have all of the tools at our disposal for robust photographic censusing.

Figure 5.20 shows a comparison of four simulations:

1. Red Line - Input: CA-R, Ranker: HotSpotter, Verifier: VAMP, Curation: LCA

2. Green Line - Input: CA-R, Ranker: HotSpotter, Verifier: PIE, Curation: LCA

3. Blue Line - Input: CA-R, Ranker: PIE, Verifier: VAMP, Curation: LCA

4. Purple Line - Input: CA-R, Ranker: PIE, Verifier: PIE, Curation: LCA

The figure shows GGR-16 (left) and GGR-18 (right) results for two x-axis scales. The top row shows

the same result for a maximum of 2,400 human decisions, and the bottom row uses a maximum of

300 decisions.

All four simulations end with a population estimate within 5.5% for GGR-16 and 10% for

GGR-18. The clearest outliers are for the simulations where PIE operates as the verifier, consistently

over-shooting the target. Upon inspection, PIE is performing so poorly because it is sensitive to
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changes in pose and comparable quality. The majority of the extra IDs that PIE suggests is where it

takes a sizeable single ID and splits it into two IDs, with one ID containing only 1-2 annotations

and the second ID containing all other annotations for that ground-truth ID. This result suggests that

PIE can be helpful to identify outlier Census Annotation Regions that are on the border of being

comparable. Furthermore, for GGR-16 and GGR-18, the PIE ranking algorithm with VAMP as

the verifier was the most accurate configuration (3.5% error and 0.8%, respectively). Compared to

HotSpotter with VAMP, however, that best result came at the cost of double the number of human

reviews.

In summary, the HotSpotter and PIE algorithms work well as ranking algorithms for Grévy’s

zebra. However, using PIE for animal ID curation inflates the overall estimate because pose

variations are challenging for that algorithm, and careful attention should be paid to animal IDs with

only a few annotations. We will conclude this chapter by examining the impact human decision

errors have on animal ID curation.

5.7.4 Effect of Human Verification Accuracy

All of the simulations above have used a perfect human oracle whenever a manual decision is

needed. This oracle was configured to have a guaranteed accuracy of 100% so that any effects from

human fallibility are removed, and the different algorithms can be compared in a more standardized

environment. The expectation that the human is always perfect is unrealistic, however, even for

Census Annotation Regions. Looking back to the user study in Section 5.4, we can recall that an

expert human reviewer’s accuracy is around 98% on average for general pairs of annotations, and

novice reviewers are approximately 94% accurate. The lowest accuracy measured for a human

reviewer during that study was 91.7%, so a minimum expectation of 90% seems realistic as a test

condition. To compare the impact of poor human decision-making, we can simulate the human

oracle with varying levels of random error for a fixed animal ID configuration. The simulations

in this sub-section were completed with CA Regions as the input annotation set, HotSpotter as

the ranker, VAMP as the verifier, and LCA as the decision management algorithm to keep the

comparisons simple.

Figure 5.21 shows the simulated results with a human error rate ranging from 50% to 100%.

All previous simulation “baseline” results for this configuration are shown as a red line and converge

after 120 human decisions. As expected, when the accuracy of the human verifier drops, the

total number of reviews increases. Encouragingly, however, the number of human decisions only
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Figure 5.21: The simulated population estimates across different human accuracies.
Simulated Lincoln-Petersen population estimates are shown on the y-axis
against the number of human decisions were requested on the x-axis. The
estimates for GGR-16 (left) and GGR-18 (right) are shown for different
simulated levels of human decision accuracy, ranging from 50% to 100%.

increases by about one-third. This effect is seen down to a human accuracy of 85% and achieves

the same result as the 100% simulation. This result is hopeful since it suggests that photographic

censusing with LCA is fairly fault-tolerant and can accept human error with a healthy margin to

spare for an individual user’s ability. At 80% human accuracy, we start to notice a decrease in

overall accuracy by 2-4% and a significant drop-off in performance at 75%. Interestingly, the

LCA algorithm still converges when the human verifier is 50% accurate (a coin flip). The problem

is that the GGR-16 population estimate is 14.5% under-counting, and the GGR-18 estimate is

incorrect by -10%. An accurate human verifier is therefore crucial to the reliability and automation

of photographic censusing. These effects, while not tested, will only be exacerbated with the CA

and “Quality Baseline” sets and will be much more devastating to reducing the overall workloads

with the Graph ID algorithm. As the best-case scenario, the comparison provided here demonstrates

that a minimum human accuracy of 90% is an acceptable target for practical use. Similar to the loss
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Figure 5.22: Example images of HotSpotter matched regions (in yellow) for Grévy’s Zebra.
The HotSpotter algorithm automatically finds corresponding texture patterns
between two images and ranks likely matches. The regions that tend to match
strongly for Grévy’s zebra are the hip and shoulder areas, which are highlighted
uniformly for all examples. The concepts of Census Annotation and Census
Annotation Regions (also shown here) are designed to focus a photographic
census on the most likely matching areas while also removing distracting
background textures from plants and animals.
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of accuracy when the CA classifier was run at 90%, if the accuracy of the human reviewers drops

too low, then Assumption 3 (see Section 4.3.1) begins to break as the inter-encounter recall is no

longer perfect.

5.8 Summary

Census Annotations and Census Annotation Regions are critical to automated photographic

census because they 1) speed up human verification of match pairs and reduce the number of

manual decision errors, 2) better separate the positive and negative scores predicted by algorithmic

verifiers, 3) reduce the number of photobombs and scenery matches, and 4) drastically reduce the

amount of human interaction needed during animal ID curation. Census Annotation Regions are

powerful because they force a photographic census to consider only the most critical information

for matching, as seen in Figure 5.22.

In summary, human verifiers can make 40% more decisions in the same time frame when

comparing Grévy’s zebra CA-Rs and make 70% fewer mistakes. However, human verifiers are also

known to make mistakes up to an error rate of 10%. A human accuracy rate of 90% has been shown

with simulations to only increase work by approximately 30% and end with a consistent result

(compared to a perfect verifier). The VAMP verification algorithm can automatically decide – given

a maximum false-positive error rate – 10% more pair decisions when CAs are used and 15% more

with CA-Rs, compared to using the standard annotations produced by the detector. Furthermore,

CA-Rs dramatically improve the automated score separation for known cases of incidental matching,

increasing the distance between the average positive and negative scores by 77% for photobombs

and 84% for scenery matches.

Finally, simulations with Census Annotations and Census Annotation Regions demonstrate

that using those annotations results in consistent population estimates compared to a known baseline.

For example, a photographic census with CA-Rs uses 70% fewer human decisions than the quality

baseline and only increases the population estimate error by 0.5% for GGR-16 and 0.3% for GGR-18

while also remaining inside the expected confidence interval. When we consider the number of

decisions needed to arrive at these estimates, LCA with CA-R only required 120 human decisions for

a database of 468 ground-truth IDs (0.26 decisions per ID). Furthermore, the 120 human decisions

were in addition to 13,307 automated reviews, indicating a decision automation rate of 99.1%.

Using LCA with the quality baseline annotations results in 420 human decisions against 22,552

automated decisions (98.2% automated). In contrast, the baseline Graph ID algorithm with the
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baseline annotations approximated the population estimate with 2,414 human decisions for 487 IDs

(4.96 decisions per ID). That result was generated with only 12,988 requested automated reviews, an

automation rate of 84.3%. Likewise, the Graph ID simulation with CA-R had 642 human decisions

out of 5,553 total decisions (88.4% automated). These results indicate that using CA-R increases

the automation of ID curation and dramatically reduces the number of automated reviews that are

needed.

The next chapter will reveal the details of the Great Grévy’s Rally and the procedure used in

2016 and 2018 to provide a population estimate. The original process used for those photographic

censusing events did not include Census Annotations, Census Annotation Regions, or LCA. How-

ever, a culminating experiment is provided that shows the intended use case and most up-to-date

procedure.



CHAPTER 6

PHOTOGRAPHIC CENSUSING OF GRÉVY’S ZEBRA IN KENYA

The Grévy’s zebra (Equus grevyi) has been the focus of active population monitoring efforts in

Kenya [241], [246] because of its Endangered status and shrinking population [1]. However,

previous monitoring efforts [378], [379] were limited to small portions of the total population or

did not attempt to build a comprehensive animal ID database with every individual. In contrast, a

census of the entire species would provide ecologists with an unprecedented level of insight into

how conservation efforts are impacting the Grévy’s population. Furthermore, a repeat census on

the same population could help establish useful ecological trends and, hopefully, chronicle the

species’ return to sustainability. To this end, the previous chapters have demonstrated the automated

algorithms (the detection pipeline in Chapter 3 and Census Annotation in Chapter 5) and procedures

(components in Chapter 4) that are needed to perform a large-scale photographic census over time.

These tools represent a paradigm shift in animal population monitoring and culminate nearly a

decade of academic research in applied computer vision methods and on-the-ground data collection.

This chapter presents the analysis of the Great Grévy’s Rally (GGR), a large-scale photo-

graphic census of the entire Grévy’s zebra population in Kenya. The GGR process is offered as an

improved successor to the prototype process established during the Great Zebra and Giraffe Count

(GZGC) [2]. The GZGC was held March 1-2, 2015 at the Nairobi National Park in Nairobi, Kenya,

and was organized to estimate the resident populations of Masai giraffes (Giraffa camelopardalis

tippelskirchi) and Plains zebras (Equus quagga) within the park. In contrast, the GGR was first

held on January 30-31, 2016 in the Laikipia region of central and northern Kenya, covering the

known range of Grévy’s zebra within the country. The GGR was repeated on January 27-28, 2018

for the same survey area and added a second census on reticulated giraffes (Giraffa reticulata). The

reticulated giraffe population has an overlapping resident area with Grévy’s zebra in Kenya, making

it an ideal species for simultaneous photographic censusing. Figure 6.1 provides a map of Kenya

and the respective survey areas for each of the three censusing rallies. We can see that the area

covered by the GGR events is much larger than the GZGC, incorporates the conservation areas of

Portions of this chapter previously appeared as: J. Parham, J. Crall, C. Stewart, T. Berger-Wolf, and D. I. Rubenstein,
“Animal population censusing at scale with citizen science and photographic identification,” in AAAI Spring Symp., Palo
Alto, CA, USA, Jan. 2017, pp. 37–44.

Portions of this chapter previously appeared as: J. Parham, C. Stewart, T. Berger-Wolf, D. Rubenstein, and J.
Holmberg, “The Great Grevy’s Rally: A review on procedure,” in AI Wildlife Conserv. Workshop, Stockholm, Sweden,
Jul. 2018, pp.1–3.
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Figure 6.1: The map of the survey boundaries for the GZGC, GGR-16, and GGR-18
photographic censusing rallies. The survey area of the GZGC was confined to the
Nairobi National Park in Nairobi, Kenya, and censused Masai giraffes and Plains
zebras. The capital city of Kenya, Nairobi, is represented with a red star. The
Great Grévy’s Rally 2016 and 2018 took place in the northern Laikipia region of
Kenya, the primary residence area of Grévy’s zebra and reticulated giraffe.
Rendered with Google Maps. Best viewed in color.

multiple Kenyan counties, and is concerned with an open animal population.

The GGR events in 2016 and 2018 (referred to as “GGR-16” and “GGR-18”, respectively)

significantly refined the photographic censusing process used during the GZGC. Both GGR-16

and GGR-18 sampled a significantly larger geographical area, produced more confident population

estimates than historical estimates, and massively increased the amount of automation with better

computer vision algorithms. Across the three censusing rallies, approximately 100,000 photographs

were processed and collected by more than 400 volunteer citizen scientists, including biologists,

park rangers, computer programmers, tourists, and school children. As a result, the GGR is the

largest known photographic census of Grévy’s zebra ever performed and is estimated to have

cataloged 70% of all Grévy’s zebra in Kenya (as we will see later), representing the most accurate

and comprehensive census of the species to date. Furthermore, the Grévy’s zebra population

estimates from the GGR-18 have been accepted by the Kenyan government as the country’s official

population count. This recognition has never before been granted to a non-governmental group.
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Animal Photographic Censusing
Collect Detect Identify Verify Analyze

Collect
Citizen Scientist Training
Two-Day Image Capture

Image Aggregation
GPS & Time Synchronization

Images Collected

Detect
Detection Ground Truth

Whole Image Classification
Bounding Box Regression
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Census Annotations
Census Annotation Regions

Detection Bootstrapped

Identify
Photometric Checks & Caching

Initialize ID Database
Human Pairwise Decisions

Automated Verifier Decisions
Photobomb Checks*

Singleton Checks*
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Verify
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Gender Consistency Checks
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Local/National Comparisons
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Figure 6.2: A Gantt chart for the recommended process used for animal photographic
censusing, including data collection and boostrapping of the detection pipeline for
novel species. *Steps were not used during the GGR-16 and GGR-18.
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Table 6.1: The number of cars, cameras, and photographs for the GZCD, GGR-16, and
GGR-18 photographic censusing rallies. The GGR rallies had over three times as
many citizen scientists who contributed four times the number of photographs for
processing. The GGR-18 rally, as compared to GGR-16, included a 33% increase
in photographers and a 21% increase in the number of photographs collected.
[GZGC & GGR-16] ©2017 AAAI. Reprinted, with permission, from: J. Parham, J.
Crall, C. Stewart, T. Berger-Wolf, and D. I. Rubenstein, “Animal population
censusing at scale with citizen science and photographic identification,” in AAAI

Spring Symp., Palo Alto, CA, USA, Jan. 2017, pp. 37–44. [GGR-16 & GGR-18]
©2018 IJCAI. Reprinted, with permission, from: J. Parham, C. Stewart, T.
Berger-Wolf, D. Rubenstein, and J. Holmberg, “The Great Grevy’s Rally: A review
on procedure,” in AI Wildlife Conserv. Workshop, Stockholm, Sweden, Jul. 2018,
pp.1–3.

Cars Cameras Photographs
GZGC 27 55 9,406
GGR-16 121 162 40,810
GGR-18 143 214 49,526

In summary, this chapter has two goals. The first is to describe the procedures of the GGR

data collection events and processing, contrasting them with the earlier GZGC event. This process

includes using the detection pipeline (without Census Annotations) and the Graph ID animal ID

curation algorithm to build an ID database, which was the current state of the analysis at the time

in 2016 and 2018. As described below, this database is checked with various automated tools and

human decisions for redundancy and subjected to quality checks to ensure accuracy. Furthermore,

the final population estimates for both rallies are generated after extensive human effort because,

as stated, some of the automation tools presented earlier in this dissertation were unavailable at

the time. The second goal of this chapter is to re-analyze the GGR-18 event using these new tools.

This new analysis is a culminating experiment to show the effectiveness of the methods developed

(CA and CA-R) or incorporated (LCA) to reduce human interaction while maintaining a consistent

population estimate. The updated mathematical framework (see Section 4.3) is also used for the

first time to fine-tune the final population estimate after taking into account the overall estimated

effect of the machine learning algorithm’s errors.
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6.1 The Great Grévy’s Rally (GGR) in 2016 and 2018

Both Great Grévy’s Rally censusing events followed the same procedure, presented as a

complete process flow diagram in Figure 6.2. One of the primary benefits is that all of the machine

learning components can be bootstrapped as the analysis proceeds with the help of human annotators.

This design is crucial as ready-to-go, pre-existing machine learning models are not available for

most endangered species. Furthermore, once the machine learning components are successfully

trained, they can be reused for future events with the same collection procedure and species of

interest. This section provides details for how images were collected and aggregated for processing

during the GGR events and describes how the detection pipeline was applied on real-world imagery.

First, images collected from citizen scientists need to be aggregated and synchronized for accurate

GPS and time metadata. Next, the resulting annotations must be curated into an animal ID database

with ranking and verification algorithms. The following discussion explains how the GGR-16 and

GGR-18 events created their respective ID databases, which were subject to different automated

algorithm versions at the time. Lastly, after consistency checks, the population estimates for Grévy’s

zebra and reticulated giraffes are reported.

6.1.1 Image Collection with Citizen Scientists

A vital feature of the censusing procedure is the ability to distribute and parallelize the

collection of animal imagery. The robustness of the sight-resight study critically depends on

capturing as many sightings and resightings of individuals. This design is in sharp contrast to

a count-based estimate which must always be careful to avoid double counting and overlapping

sample regions. Additional advantages of using cameras during a census include 1) it provides

actionable evidence of where a specific individual was in time and location (which allows for

the possibility of future auditing) and 2) the mechanism is easy to teach to the average person.

Furthermore, by not requiring specialized hardware – only a car and a GPS-enabled camera – a

large area can be surveyed efficiently, with many photographers overlapping the same geographical

area at the same time. Another essential feature of the data collection is its cost-effectiveness, as

citizen scientists, volunteers, tourists, field guides, school children, park rangers, scientists, and any

other stationary ground-based sources (e.g., camera traps) can all volunteer to contribute data.

The number of cars and volunteers, and the number of photographs taken for the three rallies,

are summarized in Table 6.1. Since the volunteers taking photographs are mobile, they can go

where the animals are; this is in stark contrast to data capture that uses only static camera traps or
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Figure 6.3: An image of the participant training “cheat sheet” used during the GGR-18
photographic censusing rally, showing the do’s and don’ts for capturing images.
The examples are explicitly updated to bias the participants towards taking better
pictures of AoIs, even showing a primary target on the good examples.
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fixed-route surveys. It is worth noting that the number of images collected during the GGR-18 is

20% higher and with 30% more photographers compared to the GGR-16 event. Furthermore, it

was recognized that the volunteer photographers for all three censusing events did not expect to be

paid for their effort. In other words, there seemed to be an intrinsic worth for participants to be part

of a scientific endeavor, which was enough compensation in itself. This fortuitous effect suggests

that photographic censusing is an effective method of community engagement.25 The GGR-18

event was able to recruit photographers that participated in the GGR-16 event, exemplifying the

fact that some participants were willing to volunteer their time without the need for incentives from

the organizers. Before we delve deeper into the analysis of the collected images, let us review the

participants’ training procedure that was provided prior to each event.

6.1.1.1 Citizen Scientist Training

The participating photographers were asked to go into an assigned survey area via car and

capture images of the species of interest (i.e., Grévy’s zebra and reticulated giraffe). Prior to

departing, each participant was given a training document and a Cheat Sheet (Figure 6.3) that

showed the common do’s and don’ts of a photographic collection. For example, the participant

training document given to participants of the GGR-18 is provided in Appendix A, and it includes

instructions on how to set up the Nikon GPS-enabled cameras. The participant instructions were

updated slightly between the GZGC, GGR-16, and GGR-18 censusing events based on a better

understanding of how the detection pipeline and ID systems were failing. The training process

created a feedback loop, where subtle differences in the training instructions influenced the quality

of images collected. For example, the GGR-18 training instructions encouraged the photographer

to:

1. Pick a single subject (of the target species and target viewpoint),

2. Always take a picture of an animal in the foreground,

3. Place the subject in the center of the photograph, and

4. Zoom the camera such that the animal covers around 50% of the image (if possible).

All photographers for the GZGC were requested to take pictures of the left sides of plains

zebras and Masai giraffes, while photographers for the GGR were requested to take pictures of

25Refer to [2] for an example on how to reward volunteer citizen scientist participants for their time and image
contributions. For GZGC, a same-day print-out was provided to each participant that listed known and new animals
they photographed.
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the right sides of Grévy’s zebras and reticulated giraffes. Having a consistent viewpoint (left or

right) allows for more effective sight-resight and reduces the chance of ML errors. Furthermore,

the distinguishing visual markings for these species are not left-right symmetrical, so the animal’s

appearance differs (sometimes significantly) from side to side. This asymmetry means that a

right-only census must discard a left viewpoint sighting as irrelevant data.

Along with guidance on species, photographers were shown examples of good/poor quality

photographs emphasizing 1) the correct side of the animal, 2) getting a large enough and clear view,

and 3) seeing the animal in relative isolation from other animals. To better guarantee a valuable

sighting, GGR photographers were requested to take about three pictures of the right side of each

Grévy’s zebra they saw. In both the GZGC and GGR, photographers were invited to take other

pictures once they had adequately photographed each encountered animal, causing miscellaneous

photographs to be collected. This decision was primarily to help minimize photographer fatigue

and allow flexibility when an exciting or otherwise rare species was encountered.

In contrast, the instructions for the GGR-16 did not focus on a target animal, only emphasizing

the correct species and viewpoint. The above changes nudged the photographers during the GGR to

take better pictures of animals by implicitly focusing on the concepts that overlap with Annotation

of Interest (AoI, see Section 3.6). To make the a priori decision more straightforward for the AoI

detection component, specific examples and instructions to guide participants into taking better

images were provided. Furthermore, the concept of a Census Annotation did not exist when the

GGR-16 or GGR-18 collections were performed. However, the benefit of asking photographers

to focus on features consistent with AoIs is that it also biased the participant to capture good CA

examples. We saw in Section 5.1.1 a strong correlation between AoI and CA, indicating that the

collected animal sightings were still strongly biased towards identifiability.

6.1.1.2 GPS Cameras & Time Synchronization

Upon registering for the GGR-18 censusing rally, all participants were given a GPS-enabled

camera and a paper “camera card”. This procedure is similar to the GZGC, except for how GPS

locations were synchronized across cars. During the GZGC, a dedicated GPS dongle was provided

for each car, and participants could bring their cameras. Unfortunately, this open policy proved to be

a synchronization challenge across multiple timestamp formats, failures to start GPS recording, and

other miscellaneous inconsistencies or problems. As a result, the GGR-16 and GGR-18 procedures

were improved to address these issues:
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Figure 6.4: An image of the camera card used for the GGR-18 participant “photographer 1”
who was assigned to “car 1”. A QR detection algorithm was used to automatically
localize the first photograph that was used to sync all participants in a car.

1. A Nikon GPS-enabled camera was provided to every car that volunteered to take pictures

for the rally. This camera is always labeled with the letter “A” within the car. In addition, a

GPS camera replaced the GPS dongle that was provided to every car during the GZGC. All

photographers’ times of their photographs were assigned locations via a look-up table from

the GPS log.

2. A QR code was added to the camera card that provided a link to the Great Grévy’s Rally

website26, which also embedded the car number and photographer letter into the URL.

3. The “3-2-1 Snap” handout used during the GZGC27 was combined and consolidated with the

camera cards. The for GZGC, all participants in a car used a physical sheet of paper to take a

synchronized photograph at the start of the day. Each participant then wrote the local time

for when the picture was taken on their registration cards. The written time, the photograph,

26greatgrevysrally.com (Accessed: Oct. 29, 2021).
27See Section 2.1 of [2], mentioned there as a photographer’s Image0.
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and the camera’s internal clock were used to calculate the correct time for each image a

photographer contributed. For the GGR-16 and GGR-18, the “3-2-1 Snap” wording was

added to the front side of the camera card, which was used to coordinate all photographers in

a car. Since at least one camera in the car was guaranteed to support GPS (and therefore has

access to accurate timestamps), participants did not need to write down the local time.

An example sync image of the camera card with QR code can be seen in Figure 6.4. During

processing, the images were automatically scanned to find the QR code for each photographer

in a car. The timestamps of the QR code are associated with the correct timestamp provided by

the GPS camera, which receives accurate date and time data from the orbiting satellites. A given

photographer’s images were then assigned a “timedelta” (i.e., a time offset), which was used to

correct their respective EXIF timestamps to local Kenya time. Furthermore, there is a unique QR

code for day 1 and day 2 of the census rally. The second QR code and “3-2-1 Snap” image are

used to cross-reference and check the timedelta calculation for a given photographer. The benefit of

using a separate QR code for days 1 and 2 is that it adds redundancy because some photographers

forgot to take the image on either day. In that event, the assumption is that the system clock of each

participant’s camera is at least internally consistent, so one timestamp is sufficient to establish the

correction factor.

6.1.1.3 Aggregating Multiple Cameras

After the photographers took the images, censusing rally staff collected and stored them

onto a single centralized computer. Each photographer’s camera card was used to create a named

folder of that participant’s images during collection (e.g., “GGR-18/CAR-1/CAMERA-A”). The

photographers within the same car had the same car number, each with their own unique camera

letter. The letter “A” was reserved for the census-provided GPS-enabled camera in the car taking

photographs. Unfortunately, this relatively simple procedure still resulted in the inappropriate

images being grouped – the approximately 250GB of collected data during each event needed to be

cleaned and restructured.

The QR detection algorithm searched a photographer’s contributed images to find the first

image that had a QR code. Some data organizing errors were found by comparing the QR camera

card photograph (which embeds photographer information) with its assigned folder name. For

example, with the GGR-18 data, 45 manual resolutions needed to be made, including renaming

folders, merging two folders, and moving folders from one car to another. The first QR image of the
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Figure 6.5: The number of photographs (left) that adhered to the collection protocol for the
GZGC (inner-ring) and the GGR-16 (outer-ring). The number of photographs
that adhered to the viewpoint collection protocol was around 50% (green) for the
GGR-16 and the GZGC. The number of which photographs (right) that had
sightings on day 1 only, day 2 only, and resightings for the GZGC (inner-ring) and
GGR-16 (outer-ring); the sightings data and its colors are meant to mirror that of
Figure 6.6. Note that any photographs with no sightings are grouped with unused.
©2017 AAAI. Reprinted, with permission, from: J. Parham, J. Crall, C. Stewart,
T. Berger-Wolf, and D. I. Rubenstein, “Animal population censusing at scale with
citizen science and photographic identification,” in AAAI Spring Symp., Palo Alto,
CA, USA, Jan. 2017, pp. 37–44.

rally was assumed to have been taken simultaneously with the A camera, providing a method to

establish the non-A camera’s time offset from local time and approximate GPS location. However,

the QR code detection was not perfect. Sometimes a human reviewer had to manually search for

the QR code by hand, starting with the photographer’s earliest images working forwards in time.

Images taken outside of the time range of the two-day event were discarded to preserve the privacy

of the contributors. For example, the data collected during the GGR-18 had 53,193 images, but

3,649 were taken outside the two-day time window or geofence boundary of the censusing rally.

6.1.1.4 Adherence to Training Instructions

Now that the images have been collected from the volunteer photographers, we wish to analyze

how well the resulting images conform to the provided training instructions. Fir the GZGC and
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Figure 6.6: The map of image GPS locations from the GZGC censusing rally. Colored dots
indicate sightings during the two days of each census; red was from day 1 only,
blue was day 2 only, purple was resightings, and gray were unused. Rendered
with Google Maps. Best viewed in color. ©2017 AAAI. Reprinted, with
permission, from: J. Parham, J. Crall, C. Stewart, T. Berger-Wolf, and D. I.
Rubenstein, “Animal population censusing at scale with citizen science and
photographic identification,” in AAAI Spring Symp., Palo Alto, CA, USA, Jan.
2017, pp. 37–44.

GGR-16, all annotations were created by hand, and viewpoints were added to determine how well

the citizen scientists followed the data collection protocols. As discussed earlier, citizen scientists

were instructed first to take photographs from specific viewpoints on the animals – left side during

the GZGC and right sides for Grévy’s zebras (GGR-16) – and then take additional photographs

if they desired. As such, the distribution of viewpoints is a strong indicator of adherence to the

protocol. For example, Figure 6.5 (left) shows that around 50% of the photographs in the GZGC and

GGR-16 had an annotation from the desired viewpoint (green). Furthermore, when the photographs

of neighboring viewpoints (yellow) are taken into account, the percentage grows to 60%. The graph

in Figure 6.9 reinforces the argument of good adherence, showing how the photographs were used

during the analysis. The most significant percentage of photographs filtered out did not include

animals of the desired species. The second highest percentage was from poor photograph quality.

Even so, the number of photographs used is still around 50% for the GGR-16.
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Figure 6.7: The map of image GPS locations from the GGR-16 censusing rally. Colored dots
indicate sightings during the two days of each census; red were from day 1 only,
blue were day 2 only, purple were resightings, and gray were unused. The blue
area lines indicate Kenyan county boundaries. Rendered with Google Maps. Best
viewed in color. ©2018 IJCAI. Reprinted, with permission, from: J. Parham, C.
Stewart, T. Berger-Wolf, D. Rubenstein, and J. Holmberg, “The Great Grevy’s
Rally: A review on procedure,” in AI Wildlife Conserv. Workshop, Stockholm,
Sweden, Jul. 2018, pp.1–3.



188

Figure 6.8: The map of image GPS locations from the GGR-18 censusing rally. Colored dots
indicate sightings during the two days of each census; red were from day 1 only,
blue were day 2 only, purple were resightings, and gray were unused. The blue
area lines indicate Kenyan county boundaries. Rendered with Google Maps. Best
viewed in color. ©2018 IJCAI. Reprinted, with permission, from: J. Parham, C.
Stewart, T. Berger-Wolf, D. Rubenstein, and J. Holmberg, “The Great Grevy’s
Rally: A review on procedure,” in AI Wildlife Conserv. Workshop, Stockholm,
Sweden, Jul. 2018, pp.1–3.
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Figure 6.9: The numbers of collected photographs from the GZGC and GGR-16 and how
they were used. A large number (gray) were filtered out simply because they had
no sightings or captured distracting species. We further filtered the photographs
taken of undesired viewpoints and had poor quality. Lastly, we filtered
photographs that were not taken during the two days of each rally (some
volunteers brought their cameras with non-empty personal memory cards) or had
corrupt/invalid GPS. ©2017 AAAI. Reprinted, with permission, from: J. Parham,
J. Crall, C. Stewart, T. Berger-Wolf, and D. I. Rubenstein, “Animal population
censusing at scale with citizen science and photographic identification,” in AAAI

Spring Symp., Palo Alto, CA, USA, Jan. 2017, pp. 37–44.

6.1.1.5 Geographic Coverage & Image Distributions

Despite a skewed distribution, there was still strong area coverage across all three census

rallies. The locations of images taken during the GZGC can be seen in Figure 6.6, GGR-16 in

Figure 6.7, and GGR-18 in Figure 6.8. Note that the maps shown in the figures are at vastly different

scales (refer to Figure 6.1), and the coverage plots in the GZGC essentially show the roads through

the Nairobi National Park. The park was split into five zones [2] to help enforce coverage, which

was very good in most cases. For the GGR, the 25,000 km2 survey area was broken into 45 counting

blocks with variation in the animal density due to the presence of human settlements and the

availability of habitat and resources to sustain Grévy’s zebras. These 45 blocks (comprised mainly

of protected conservation areas) were further organized into one of 5 Kenyan counties covering

the survey area: Isiolo, Laikipia, Marsabit, Meru, and Samburu. The blue lines on the GGR maps

show county boundaries. The spatial distributions of resightings are pretty uniform for both rallies,

indicating that the respective counting block partitioning schemes accomplished their intended

goals. Furthermore, there were also five zones for the GGR events to ensure geographically isolated

areas were properly sampled (see the top of Figure 1 in [380]).

Figure 6.10 plots the distribution of photographs per camera. We see that some photographers

and cars are more prolific than others. For example, the car that contributed the most images was

nearly twice as productive as the second-most-productive car during the GGR-16 and produced

nearly 3.5 times as many images as the most active car during the GZGC. There are several possible

reasons for the observed drop-off. In the GZGC, while some photographers were professional

ecologists and conservationists, others were volunteers recruited on-site. Therefore, a significant
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Figure 6.10: The number of photographs taken by the top 20 cars during the GZGC and the
GGR-16. ©2017 AAAI. Reprinted, with permission, from: J. Parham, J. Crall,
C. Stewart, T. Berger-Wolf, and D. I. Rubenstein, “Animal population censusing
at scale with citizen science and photographic identification,” in AAAI Spring

Symp., Palo Alto, CA, USA, Jan. 2017, pp. 37–44.

difference in the commitment to take large quantities of photographs was expected. For GGR-16,

where volunteers were recruited in advance, the expertise was more uniform, but each car also had

an assigned region, and the regions differed significantly in the expected density of animals. A

similar distribution was seen with the data collection for GGR-18, with some cars contributing a

significant percentage of the photographs. The key insight is that these high-volume photographers

also sighted many individuals in the population and were assigned to areas with a known dense

population. As seen on the coverage maps, the areas with the most population also have the highest

density of photographs.

One of the known issues with the GGR-16 censusing rally was the poor coverage in the

northern areas of the overall survey area. During the GGR-18, additional participants were assigned

explicitly to the northern areas, and the estimate essentially “recovered” approximately 400 animals

that were missed during the first censusing rally. Figure 6.11 shows a heat-map for the locations of

identified zebras during the GGR-16 and GGR-18. The red line indicates the delineation between

the southern and northern blocks, showing that the GGR-18 census had a much more thorough

coverage. The county-by-county population statistics (which is shown in Table 6.3) for the GGR-16
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Figure 6.11: A heatmap of identified animals captured during the GGR-16 and GGR-18
photographic censusing rallies. The coverage in the northern blocks (above the
red line) was improved during the GGR-18 (right) as compared to the GGR-16
(left).

and GGR-18 also support this conclusion as the population estimates in the southern counties are

stable over the two-year interval. The northern region was simply not sampled thoroughly enough

during the GGR-16, resulting in that area violating Assumptions 1 and 4 from Section 4.3.1.

6.1.2 Building the Animal ID Database

The processing of the collected data28 includes multiple stages and is designed to be a

comprehensive pipeline that takes raw images as input and returns a set of named sightings with age

and sex metadata. To provide a quick summary, we 1) curated a portion of the data for detection

training with multiple reviewers per image, 2) trained the detection pipeline and applied it on all

collected images, 3) used HotSpotter to rank all relevant annotations, 4) used the Graph ID algorithm

to suggest manual review decisions to an asynchronous web interface or the VAMP automated

decision algorithm and 5) asked ecologists to generate age and sex labels for all named individuals.

28The GGR-16 and GGR-18 processing pre-dated the development of Census Annotations, Census Annotation
Regions, and the LCA graph curation algorithm.
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Figure 6.12: An example image of giraffe from the GGR-18 photographic censusing rally,
showing the input (left) and output (right) of the triple-marriage assignment
problem. Each image from the 10% of annotated GGR-18 data is shown to three
independent reviewers. A triple-marriage algorithm is used to merge these into
the final candidate bounding boxes (and AoI assignments) that are used for
training the localizer.

6.1.2.1 Applying the Detection Pipeline

New Grévy’s zebra and reticulated giraffe localization models were explicitly trained for the

GGR-18, ignoring pre-existing models from the GGR-16 and GZGC. These models were re-trained

due to training process improvements (i.e., an updated Python implementation) and used annotations

generated by a more robust bounding box collection methodology. A total of 5,000 images were

annotated for the GGR-18, with at least three independent reviewers for each image. A pool of 14

reviewers was asked to annotate bounding boxes for 10% of the dataset during the GGR-18. The

triple-reviewer procedure was not used with the GZGC or GGR-16 events for two reasons: 1) in

the interest of time, the reviewers’ workload was limited to one review per image (and done by

hand for all images), and 2) the analysis of the GGR-18 data included the AoI component, which

required more reliable and robust ground-truth annotations. Since each image was annotated slightly

differently by three individuals (and since AoI decisions are somewhat subjective), these bounding

box candidates needed to be merged (or “married”) into a set of finalized bounding box candidates.

A greedy three-person marriage algorithm compared the bounding boxes across the three reviewers,

prioritizing the merging of boxes with the highest joint Intersection Over Union (IoU) percentages

and starting with groups of three highly overlapping boxes (one from each reviewer). This process

continued until a threshold was met (IoU 25%). After all three-box marriages were assigned, a
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Figure 6.13: An image of the updated web interface for bounding box annotation. The
updated interface was rewritten from the ground-up as used to annotate
ground-truth data during the GZGC censusing rally. The new interface is
responsive, supports annotation parts and metadata, and is released as a public
open-source tool.
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Figure 6.14: The precision-recall performance curves for the localizer during the GGR-18
photographic censusing rally. The performance of the localizer on zebra (left)
and giraffe (right) AoIs for the GGR-18. The NMS threshold that achieved the
highest precision-recall AP for each species was chosen, followed by the
operating point that was the closest to the top-right corner, balancing precision
and recall for the highest area of AP. Coincidentally, both species had the best
performance with a NMS threshold of 40% overlap and – approximately for
both species – a best operating point at 0.4 for the detection confidence.

second round of two-box marriages was performed. An example of a marriage solution can be

seen in Figure 6.12. Furthermore, AoI flags were determined independently for each annotation

before the marriage assignments. These flags are vital to properly tune the localization models to

de-prioritize background animals. Figure 6.13 displays the web interface that the reviewers used

to annotate all ground-truth detection data. The interface was further updated since its use in the

GZGC to add support for part bounding boxes. The bounding boxes and their AoI assignments

(seen in blue) for a given image are displayed together (left), and the final bounding boxes and AoI

assignments are also shown (right). The final AoI flag was determined by a majority vote, with

married pairs of two being marked as an AoI if at least one reviewer considered their bounding box

an AoI.

The whole-image classifier (see Section 3.2) and localizer were trained with an annotated
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Figure 6.15: The ROC performance curves for the AoI component during the GGR-18
photographic censusing rally. The AoI classifier was trained to predict the
majority decided AoI flags on each annotation annotated from the 5,000 training
image set for the GGR-18.

subset of bounding boxes with their species labels. The precision-recall performance curves of AoI

detections can be seen in Figure 6.14 for Grévy’s zebra (left) and reticulated giraffe (right). The

figures show varying levels of non-maximum suppression (NMS) applied on the output detections,

both achieving an AP of at least 94% for their best respective configurations. The next step was

having reviewers add viewpoint assignments to each animal (across the cardinal and sub-cardinal

eight directions) for training the annotation classifier. The bounding boxes with species assignments

also provided sufficient training data for training the coarse foreground-background segmentation

classifier. Lastly, reviewers were asked to annotate the AoIs in the image to provide training data for

the AoI classifier. The human-curated data was used to bootstrap all of the core detection pipeline

components and was then applied to the remaining 90% of the collected data.

The AoI classifier has a classification accuracy of 76.49% on average between the two species,

indicating moderate success in eliminating apparent background sightings. The ROC curves of the
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re-trained classifier can be viewed in Figure 6.15. The number of identifiable annotations collected

for each species can be seen in Table 6.2. At the time of processing the annotations for the GGR-18,

this AoI filtering model was deemed to be inadequate. The failure modes for AoI were significant

and varied enough that it suggested a new concept for identifiability was needed. The concept

of Census Annotations and Census Annotation Regions (see Chapter 5) were partially motivated

by this AoI classification performance during the GGR-18. These new components are meant to

be a drop-in replacement for AoI in future censusing events, as will be demonstrated below in

Section 6.2.

6.1.2.2 Animal ID Curation

There were three primary challenges with using the Graph ID algorithm for ID curation during

the GGR-16 and GGR-18: 1) it was still dependent on large amounts of human effort for review 2)

its internal ID ranking process (HotSpotter) took a long time to compute for large databases and 3)

it had specific implementation inefficiencies that made it hard to fit into memory. The basic building

block of the Graph ID algorithm is the ranking results, without which the curation process is aimless

and has quadratic complexity. The algorithm uses the ranked list to prioritize which matches are

sent to human reviewers and automated decision algorithms, representing the largest source of pairs

during the analysis. Furthermore, the total number of reviews will be influenced by the parameters

of the ranking algorithm (e.g., GGR-18 returned the top five matches for each query annotation).

Some of the ranked matches are intentionally discarded for being poor spatial candidates; some are

discarded for failing to pass a score threshold; some are bi-directional duplicates (i.e., A matched

B and B matched A, so one match pair is discarded). For example, for 11,916 Census Annotation

Regions and a ranked list configuration that returns the top-10 matches (allowing twice as many

potential matches as top-5), the HotSpotter algorithm suggests 67,247 total matches. The resulting

ranked list is passed to the VAMP automated verifier, which automatically decides pairs above a

scores threshold (as specified by held-out validation data). Any match that falls below the threshold

is provided to a human for a decision.

The verifier score threshold is not the only way for reviews to be added to the queue of

pairs that need a decision from a human reviewer. When the Graph ID algorithm identifies an

inconsistency, it immediately adds additional annotation pairs into the queue to find the problem.

Ideally, the top of the human review queue (and the first to be provided to a reviewer) is the

match that is actively blocking the ID curation algorithm. Unfortunately, this means that the review
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process is restrictively iterative. Worse, the processing between each annotation is non-deterministic,

meaning that the Graph ID algorithm could take an indeterminate amount of time before providing

the next match to review to a human. Herein lies a dilemma: we wish to 1) provide a match to a

reviewer such that the ID curation algorithm can resume29 and 2) never run out of relevant reviews

to provide to the active reviewers. For the GGR-16 and GGR-18 processing, it took a team of

around a dozen reviewers working concurrently against an ever-updating set (n=500) of candidate

matches to review. Even with advanced and accurate machine learning methods for detection,

feature description, ranking, and pairwise verification, it still took months of full-time analysis to

review comprehensively.

For each annotation, approximately 3-4 human or automated reviews were required (top-5)

for the animal ID database to be consistent. For example, the GGR-18 analysis incorporated 10,044

Grévy’s zebra and 4,018 reticulated giraffe annotations and required 35,608 total pairwise reviews.

Exactly 18,556 reviews were performed by a human reviewer (52.1%) during GGR-18, which

indicates that – optimistically – at least 1.5 human reviews per annotation are required on average.

Thus, the process used by the GGR-16 and GGR-18 events does not represent a scalable solution to

large-scale photographic censusing. What is needed is 1) an order-of-magnitude reduction in the

amount of human involvement in photographic censusing and 2) non-blocking curation algorithms

that do not require highly iterative workflows. The GGR-16 and GGR-18 events did not benefit

from Census Annotation Regions and LCA at the time, and their respective ID curations were

mainly performed by hand. Luckily, as we have seen, the ID databases for both events converged

and can be used as a comparative baseline for future algorithm development. The following sub-

section provides some implementation details on how the memory constraints of the Graph ID

algorithm were mitigated. The reader can safely skip to Section 6.1.2.4 to review the next step of

the photographic censusing procedure on demographics and quality checks.

6.1.2.3 Implementation Details for Tree-based Graph ID Curation

The selected annotations for ID from the detection pipeline were partitioned into a binary

tree (four levels for zebras and three levels for giraffes) to more efficiently control the ID curation

process. This structure allowed different parts of the ID database to be worked on simultaneously by

the same pool of reviewers. Each leaf of the tree was balanced such that there existed roughly 1,000

annotations, with annotations taken by the same car automatically grouped. A reviewer was then

29Refer to [13] for specific details on Graph ID and its phase-based workflow.
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Figure 6.16: An image of the web interface for reviewing matched annotation pairs. The
Graph ID algorithm suggests an iterative list of matches for review by humans.
We extend the base algorithm to make it asynchronous and allow multiple
web-based reviewers to make decisions concurrently. This match shows an
example of a negative match.

dispatched to work on one of the 16 (or 8) leaves to review whatever matches were ready for human

review. If the review queue for a given leaf was empty (e.g., when processing in the background to

generate new reviews), we provided the reviewer with a different leaf waiting for a human decision.

The interface (Figure 6.16) provides the reviewer with two animal sightings (top and bottom) and a

heat-map for the suggested correspondences. Once all of the leaves for a given level had converged,

they were merged in pairs of two. The process was then restarted, comparing leaves that were twice

as large as the previous round. The curation continued and worked up the binary tree towards the
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GZGC GGR-16 GGR-18

Figure 6.17: A plot of the identification convergence rates for the GZGC, GGR-16, and
GGR-18 photographic censusing rallies. The convergence of the identification
algorithm during the GZGC [2] (left), the GGR-16 (middle), and the GGR-18
(right). The x-axis shows all collected photographs in chronological order and
the y-axis shows the number of sightings against new sightings. The x-axis is the
same scale as the y-axis. As photos are processed over time, the rate of new
sightings decreases. The smaller slope of the GGR rallies indicate that the rate of
resightings for the GGR censusing events were higher than the GZGC. [GZGC
& GGR-16] ©2017 AAAI. Reprinted, with permission, from: J. Parham, J. Crall,
C. Stewart, T. Berger-Wolf, and D. I. Rubenstein, “Animal population censusing
at scale with citizen science and photographic identification,” in AAAI Spring

Symp., Palo Alto, CA, USA, Jan. 2017, pp. 37–44.

root, which contained all the annotations. As the final matching was performed on the root, the rate

of finding new animals slowed. By the time the last two leaves were merged into a single root, the

vast majority of the reviews had already been completed. The analysis was terminated when there

were no more merges and split cases after a specified period.

6.1.2.4 Demographics & Quality Checks

Once the ID curation was complete, ecologists were asked to manually annotate age and

sex information for each animal ID in the database. The reviewer was presented with all of the

annotations for a given individual animal to make a more accurate decision (e.g., to browse for

unambiguous photographs of genitalia). The review of age and sex also allows for an error checking

method, where any cross-gender or cross-age matching mistakes were flagged and corrected. The

reader is referred to the field reports [356], [357], [381] for a breakdown on the demographics

during the GGR-16 and GGR-18 along with discussion on population stability.

Another name-based check is to ensure travel constraints through GPS and time EXIF



200

Table 6.2: The number of annotations, matched individuals, and the final mark-recapture
population size estimates for the three species of GZGC, GGR-16, and GGR-18.
The Lincoln-Petersen (L-P) estimates are calculated with a 95% confidence
interval. ©2017 AAAI. Reprinted, with permission, from: J. Parham, J. Crall, C.
Stewart, T. Berger-Wolf, and D. I. Rubenstein, “Animal population censusing at
scale with citizen science and photographic identification,” in AAAI Spring Symp.,
Palo Alto, CA, USA, Jan. 2017, pp. 37–44.

Censusing Rally Annotations Individuals L-P Estimate
GZGC Masai 466 103 119±4
GZGC Plains 4,545 1,258 2,307±366
GGR-16 Grévy’s 16,866 1,943 2,269±95
GGR-18 Grévy’s 10,044 1,972 2,812±171
GGR-18 Reticulated 4,018 992 2,309±332

metadata. For example, an animal that appeared to travel too far in a short period was marked

as a potentially lousy ID with multiple animals and sent for additional review. For the GGR-16

and GGR-18 events, a global constraint of 10 km/h was applied to all sightings of Grévy’s zebra

and reticulated giraffe. This speed check identified a handful of annotations that were improperly

merged into the same ID and were manually fixed by splitting the ID into two (or more) individual

animals.

The animal IDs are then combined with their image’s date/timestamps to determine when

and where an animal was seen. Knowing the number of sightings on day 1 only, day 2 only, and

resightings between both days allow a Lincoln-Petersen estimate to be calculated as in a traditional

mark-recapture study (Table 6.2). In addition, embedded GPS meta-data – and knowing the camera

and car a photograph originates from – can be used to analyze the spatial and temporal distributions

of the data and the distributions by car and photographer. The result is a final list of the named

animals with age and sex information, which can then be compared to previous years to develop a

list of deaths, births, migration patterns, and other ecological insights.

6.1.2.5 Convergence & Sighting Distribution

Next, we turn our attention to determining how well the censusing events sampled the

underlying animal population. Figure 6.17 plots the number of new animals identified vs. the

number of processed photographs, ordered chronologically. Ideally, these curves should flatten over

time, indicating that the rate of encountering unknown individuals in the database is slowing. The
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Figure 6.18: The number of photographers per animal ID for the GZGC and GGR-16
photographic censusing rallies. The total number of photos from the GGR is
much higher than the GZGC, and the number of 15+ photos is much more
saturated, indicating better coverage and that the number of resights should be
much higher. ©2017 AAAI. Reprinted, with permission, from: J. Parham, J.
Crall, C. Stewart, T. Berger-Wolf, and D. I. Rubenstein, “Animal population
censusing at scale with citizen science and photographic identification,” in AAAI

Spring Symp., Palo Alto, CA, USA, Jan. 2017, pp. 37–44.

slope of the GZGC curve [2] flattens out over time but does not entirely converge. The final GZGC

slope suggests that if there were additional photographs to analyze, then new individuals were likely

going to be discovered (increasing the population estimate and narrowing the confidence interval).

We can compare the GZGC curve to the GGR-16 and GGR-18 curves, which are flattening out

much faster and starting to converge. The GGR curves suggest that collecting more photographs

may not have substantially impacted the final population estimate because new IDs were becoming

rare. This intuition is supported by Figure 6.5 (right), which explicitly shows a higher percentage of

resights in the GGR compared to GZGC and indicates overall better coverage of the underlying

population.

Figure 6.18 plots a histogram of the number of photographs per animal. It shows that most

frequently, an animal was photographed only once during both rallies. However, the collection

protocol encouraged volunteers to take three photographs of a sighted animal, which disagrees with

this histogram. Ideally, the number of animals seen only once should be low, while the number

of sightings distributed around three sightings should be abnormally elevated. Unfortunately,

the actual distribution suggests that this collection request was challenging for the volunteers to
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follow consistently. Encouragingly, the number of animals with single-sightings decreased between

the GZGC and the GGR-16, even though the number of annotations more than tripled. This

improvement suggests that more thorough sampling (i.e., more volunteers) and better training can

help correct this bias.

6.1.3 Animal Population Estimates

At long last, the population estimates of the GGR-16 and GGR-18 on Grévy’s zebra and

reticulated giraffes can be computed using their respective animal ID databases. The population

estimates from the GZGC [2] are also provided for Plains zebras and Masai giraffes as a comparison.

In addition, Table 6.2 provides a summary of the number of annotations used for identification, the

number of sighted individuals, and the Lincoln-Petersen index as the population estimate.

6.1.3.1 Results of GGR 2016 (GGR-16)

Over 40,000 images were collected for the GGR-16, which resulted in 16,866 annotations

and 1,942 animal IDs after curation was performed. The animals sighted during the GGR-16

were sighted on either day 1 only, day 2 only, or were sighted on both days. A total of 1,416

individuals out of 1,942 were seen on day 1, a 72.91% sampling rate of the total population of

sighted individuals. During day 2, a slightly lower number of animals was seen at a total of 1,338,

representing a percentage of 68.90%. The number of animals that were resighted between the two

days was 835. These statistics can be used to generate a Lincoln-Petersen population estimate,

as shown in Table 6.2 with a confidence interval of 95%. The population estimate of 2,269±95

indicates that during the GGR-16, between 82% and 89% of the surveyed population as seen. These

statistics suggest that the methodology from 2016 was mainly effective at sampling the resident

populations of Grévy’s zebra.

Unfortunately, upon analyzing this data as broken down by county (see Table 6.3), there were

abnormally low population densities in the most northern censusing blocks. In addition, these blocks

had a sparse set of citizen scientists across a vast geographical area, resulting in a substandard

sampling. As a result, only 45 and 46 individuals were sighted for days 1 and 2 of the GGR-16

censusing rally, and only 26 were resighted. These small numbers were compared to an adjoining

county that found roughly 240 individuals with over 170 resighted individuals each day. For the

GGR-18, additional efforts were explicitly focused on the northern counting blocks to provide better

coverage and correct the previous GGR event.
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Table 6.3: The number of annotations, matched individuals, and the final mark-recapture
population size estimates for Grévy’s Zebra for the GGR-18, by county. The
Lincoln-Petersen (L-P) estimates are calculated with a 95% confidence interval.
The county breakdown has a slightly lower total due to images that did not
properly localize within the exact county areas yet was matched by the
identification pipeline.

Kenyan County GGR-16 L-P Estimate GGR-18 L-P Estimate
Isiolo 299±54 597±182
Laikipia 1199±59 1328±105
Marsabit 66±17 250±166
Meru 344±30 384±36
Samburu 452±80 642±172

Northern Blocks 80±21 545±265

6.1.3.2 Results of GGR 2018 (GGR-18)

The number of participating photographers increased by 33% during the GGR-18 censusing

event. The photographers contributed over 49,000 images, representing a 21% increase compared

to the GGR-16 event. The increased number of collected photographs was due to adding more

photographers and including reticulated giraffes as a second species of interest. More than 23,000

images contained the primary species of Grévy’s zebra, whereas over 18,000 images contained

sightings of reticulated giraffes. These images resulted in 10,044 annotations that were used for

identification for Grévy’s and 4,018 for giraffes. The drop in identifiable annotations between the

GGR-16 and GGR-18 for Grévy’s zebra can be explained by more a restrictive filtering process

within the detection pipeline. This filtering drastically reduced the overall number of human reviews

required by the identification pipeline but slightly increased the population estimate error bounds

compared to the GGR-16. Within those annotations, a total of 1,972 unique Grévy’s zebra and 992

unique reticulated giraffes were sighted.

A total of 1,251 individuals out of 1,972 zebras were seen on day 1, a 63% sampling rate of

the total population of sighted individuals. During day 2, a slightly higher number of zebras was

seen at 1,299, representing a percentage of 65.9%. It is worth noting that these sampling numbers

are relatively consistent with the GGR-16 sampling. For the GGR-18, the number of zebras that

were resighted between the two days was 578. This value is much lower, suggesting that either

the population has gotten significantly larger (unlikely), the sampling procedure was not thorough

enough (a constant issue), or the detection pipeline was slightly too restrictive.
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The population estimate of 2,812±171 for zebras indicates that, during the GGR-18, some-

where between 66% and 75% of the surveyed population was seen. Again, these numbers are

lower than the GGR-16, possibly indicating a step backward in sampling or the quality of images.

These statistics suggest that our methodology from 2018 was still effective at sampling the resident

populations of Grévy’s zebra, but not as thorough as the 2016 census. However, the analysis is

not entirely bad news when looking at county breakdowns of the GGR-16 and GGR-18 census

estimates, as shown in Figure 6.3. The northern blocks were sampled much more heavily during

the GGR-18, and an estimated 400 animals were recovered due to better sampling. The county

breakdowns of southern counties with the largest populations (Laikipia, Samburu, and Meru) as

their population estimates are stable, providing a measure of confidence in the methods used. The

error bounds for these counties are also overlapping, suggesting that any bias in the population

estimate is not statistically significant for the vast majority of the animals.

For giraffes, on day 1, 613 individuals were sighted, 516 on day 2, and 137 were resighted

across both days. These numbers are much smaller, and the sampling ratios are much smaller. The

drastically smaller resighting value compared to the total number of individuals is reflected by a

high estimate (and error bound) for the giraffe population. The statistics suggest that the number

of giraffes in the surveyed population area is 2,309±332. The giraffe results are to be treated as

tentative, pending a re-censusing in 2020.

6.2 Culminating Experiment on GGR 2018

This section sets aside the narrative tone from the above discussion on the GGR and how

its results were calculated. Instead, the purpose of this culminating experiment is to provide

a condensed walk-through of the most current, recommended process for animal photographic

censusing in 2021. As such, we can opt to rely on the pre-trained detection pipeline and advanced

Census Annotation machine learning models that have been introduced. What follows is an end-to-

end analysis by following the steps listed in Figure 6.2 (starting just after the “Image Aggregation”

step) on a large animal population.

The population estimates from the GGR-16 and GGR-18 were a product of their respective

times and the states of the computer vision algorithms available to them. The field of computer

vision has advanced drastically between then and now, with some of the components introduced in

this thesis not even being available at the time of their original analysis. However, to demonstrate

the effectiveness of concepts like Census Annotations and the LCA curation algorithm, we wish to
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audit a GGR censusing event with modern tools. The benefit of having photographic ID evidence

for a population is that newer machine learning approaches can be evaluated for improvements in

accuracy and human involvement. This section performs a new, standalone analysis of the data

collected by the GGR-18 photographic censusing event (only for Grévy’s zebra) and compares the

population estimates to the values reported in Section 6.1.3.2. This analysis focuses on the GGR-18

over the GGR-16 event because it is the most representative geographic sampling (covering the

northern blocks) and is the active population estimate provided by the Kenyan government.

We processed all of the raw GGR-18 imagery fresh for an end-to-end run-through of the

entire procedure. We imported a total of 56,588 valid images and ran the automated detector

pipeline on the images. The localizer was configured using the pre-trained GGR-18 Grévy’s zebra

model and used an NMS threshold of 40% and an operating point of 40%. The localization model

produced 104,858 annotations, with 73,356 of those labeled with the generic zebra label. Using a

single NVIDIA Titan RTX and a 20-core server, the bounding box regression computation took

approximately 6.5 hours.

The GGR-18 census event asked volunteers to take right-side shots of Grévy’s zebra, so we

need to use the labeler network to filter out other species (including plains zebra) and any viewpoints

that did not show the right side. The labeler was trained using a collection of Grévy’s and Plains

zebra data and various viewpoints. The zebra_v1 model (an ensemble of DenseNet-style neural

networks) was configured such that the most confident species:viewpoint prediction that

was returned was used as the final label. The labeler computed results on the same accelerator

hardware in approximately 5.5 hours. The labeler produced a classification of zebra_grevys

for 67,409 annotations, but approximately half of those showed the incorrect viewpoint. The

algorithm predicted 23,458 “right”, 8,735 “front-right”, and 8,273 “back-right” viewpoints labels;

all annotations that were not Grévy’s zebra or that did not show the right side were discarded,

leaving 37,199 for further processing. These annotations were sourced from 20,015 original images.

Next, the V4 CA classifier (see Section 5.2) was run on these images to identify the most

likely Census Annotations for ID. The inference ran for 1 hour and 40 minutes and produced a set

of 15,072 Census Annotations (threshold = 0.31). For reference, using a CA classifier threshold of

0.1 results in 16,848 annotations while using 0.9 ends with 11,381. Thus, using the recommended

threshold of 0.31 keeps the majority of the borderline CAs. Next, each CA was passed to the CA

Region regression network, which took 42 minutes to compute. Once the bounding boxes were

generated, we performed NMS (IoU = 1.0) to prevent overlapping CA Regions by suppressing the
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lower-scoring box as determined by the CA classifier. The purpose of using an IoU of 100% was to

guarantee zero overlap between annotations within an image, drastically reducing the incidence

rate of mother-foal photobombs. This filtering resulted in 14,742 Census Annotation Regions for

right-side Grévy’s zebras; these annotations were sourced from 12,772 images, indicating a utility

rate of the citizen science capture of 22.6%.

Next, we synchronized all of the GPS locations and timestamps for all of the images (and

source cameras) for these Census Annotation Regions. All annotations taken outside the GGR-

18 date range (Day 1: 1/27/2018 and Day 2: 1/28/2018) were discarded. The standard GPS

synchronization step was delayed until now to focus on only the images that contributed useful

Census Annotation Regions. There were 7,737 annotations taken on Day 1 and 6,116 on Day 2,

coming from 11,991 images. Additional filtering eliminated poor qualities based on pixel size,

aspect ratio, and gradient magnitudes (blurriness). While the CA classifier does an excellent job

filtering out incomparable sightings, it still makes some mistakes. Most of the CA classifier’s

mistakes come from blurry annotations, and – while they are subjectively challenging pairs and

take humans a long time to decide – they are comparable. The average aspect ratio (height / width)

was calculated and any box outside of 2.0 standard deviations was discarded (min = 0.328, max =

1.449, mean = 0.612, std = 0.109), removing 698 annotations. A similar filter was applied to the

total number of width and height pixels for each annotation. An additional 281 annotations were

removed (minimum width 245 pixels, minimum height 161 pixels) using a minimum threshold

of the mean minus 1.5 standard deviations. Lastly, we computed the average gradient magnitude

across the image using an x-axis and y-axis Sobel filter (kernel size 3). The average of the gradient

magnitude mean for all annotations was calculated as 86.0 on uint8 RGB 3-channel cropped chip

with a maximum-linear dimension of 700 pixels (min = 12.8, max = 182.5, mean = 86.0, std = 27.9).

All annotations with a mean gradient less than 1.5 standard deviations under the average mean

gradient (less than 44.2) were removed. This left 11,916 annotations (Day 1: 6,677, Day 2: 5,239)

and 10,558 images. All other annotations and images that did not contain a Census Annotation

Region or passed these photometric quality filters were discarded and not used for further analysis.

All processing up to this point has been completely automated.

Next, the LCA algorithm was initialized by loading a pre-trained weighter function. The

weighter was created from 500 positive and 500 negative pair decisions from the GZCD dataset (see

Section 4.4). Next, the match candidates were sampled using a HotSpotter rank list for all of the

CA Regions (tuned for K = 5, Knorm = 5, ntop = 10, spatial verification was ON, scoring method
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csum) that found 67,247 pairs. The VAMP model trained on Grévy’s zebra CA Regions was used as

the verification algorithm and applied to all matching pairs. In total, 13,848 negative weights, 10

neutral weights, and 53,389 positive weights were found by the VAMP verifier for LCA. The LCA

algorithm then proceeded to try alternative pairs of clusters, asking for VAMP and human decisions,

as it worked. The pairs that the algorithm wanted a human decision were given to a web interface

and reviewed by the author.

In total, it took just under 12 hours for the LCA algorithm, working with a single human

reviewer to converge. The LCA process attempted 23,783 alternative clusterings and requested

an additional 19,160 VAMP decisions during its automated processing. The ID curation process

required just 1,297 human decisions before converging. For reference, the original GGR-18 analysis

using the Graph ID algorithm required 18,556 human decisions. The resulting ID database was then

checked to ensure no erroneous IDs with poor singletons needed to be excluded (i.e., the detection

pipeline failed to filter them out). In total, 15 IDs were excluded for having too poor quality, leaving

2,022 unique IDs in the database. The demographics labeling step was skipped, and the gender

checks were not performed for the sake of a more straightforward verification, but the speed check

resulted in zero IDs being marked for review. A total of 1,338 individuals were seen on day 1, 1,326

animals were seen on day 2, and 642 animals were seen on both days. The final Lincoln-Petersen

estimate using this new ID database was 2,764±154, consistent within 1.7% with the reported

estimate on GGR-18 (2,812±171). Furthermore, this result was 93% less human effort than the

GGR-18 processing and was completed with the effort of a single working day for one person.

Finally, we need to incorporate the estimated machine learning loss terms from Equation (4.21)

(in Chapter 4) into the final population estimate. Recall that the equation has been modified to accept

three new terms p̂mm(θ), p̂ms(θ), and p̂dm(θ). The term p̂ds(θ) is assumed to be zero as each of the

final singletons were manually checked for quality. Furthermore, using Census Annotation Regions

helped to reduce the rate of photobombs and scenery matches drastically. The LCA algorithm was

also configured to do an additional brute-force check for potential incidental matches, ensuring that

each name cluster had more stability with extra automated checks beyond what was requested by

the ranking algorithm. The verification allows us to make the assumption that p̂ms(θ) is also close

to zero, leaving p̂mm(θ) and p̂dm(θ) as the primary terms to impact the result. The reported GGR

detection recall performance on AoI Grévy’s zebra is 96%, indicating that 4% of the annotations

are missed. Furthermore, the CA classifier has a false-negative rate of 1.8% on the GZGC dataset,

so a conservative detection miss rate of 6% is estimated for p̂dm(θ). For p̂mm(θ), the top-10 recall
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rate for HotSpotter on Grévy’s zebra CA-Rs in the GZCD is 99.2%. We must also consider the

VAMP failure rate for CA-R match decisions of 1.4%. These effects combined, but with the human

verification of borderline matches, give us a conservative estimate for p̂mm(θ) at 2%. Using these

values suggests a correction value of +56 IDs for the population estimate and a widening of ±13 for

the confidence interval. The final corrected population estimate with high degrees of automation

is therefore 2,820±167 (0.3% off), compared to the originally reported estimate for GGR-18 of

2,812±171. Furthermore, the original GGR-18 analysis marshaled dozens of participants and took

around three months to complete. In sharp contrast, the new analysis took approximately two days –

with the majority of that time dedicated to hands-off, automated computing – and only relied on one

person.

6.3 Summary

The Great Grévy’s Rally (GGR) is the most extensive photographic census of the Grévy’s zebra

species ever performed in Kenya. The country of Kenya is the primary residence of Grévy’s zebra,

indicating that the population estimates from the GGR are also comprehensive for this critically

endangered species. Furthermore, the data collection rallies in 2016 and 2018 are a real-world

demonstration of the principles of citizen science and the benefits of using volunteer photographers

in data collection. Across the GZGC and GGR censusing rallies, over 100,000 photographs

were processed and collected by more than 400 volunteer citizen scientists (90,000+ images and

350+ volunteers for GGR alone). Furthermore, the GGR-16 and GGR-18 rally procedures were

significantly improved by increasing the automation of the detection and identification processing,

streamlining data collection with GPS-enabled cameras, and proving that the original methodology

from the GZGC scales to thousands of animals. Unfortunately, even though the data analysis for

GGR-18 was done with automated tools, it still required large amounts of work (nearly 20,000

human decisions), cost USD $50,000+, and took over three months.

Luckily, new advances to the ID curation process since the conclusion of GGR-18 have been

developed: Census Annotations, Census Annotation Regions, the LCA curation algorithm, and a

new Lincoln-Petersen index estimator. The primary motivation of these components is to increase

the automation of photographic censusing further and reduce the known issues (e.g., incidental

matching) that were encountered during the GGR-16 and GGR-18 analysis. As a result, these

new methodologies were used to reprocess the original GGR-18 collection from scratch. In total,

56,588 images were automatically processed by the pre-trained detection pipeline, and 11,916
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annotations were found for comparable, right-side Grévy’s zebra. The ID curation process required

1,297 human decisions before converging and estimated 2,764±154 Grévy’s zebra in the population.

After modifying for various known ML errors, the estimate was updated to 2,820±167. This result

is consistent (within 0.3%) with previous estimates on GGR 2018 data and was achieved with a

93% reduction in human effort. This new automated image analysis procedure will be employed on

the newly collected data for GGR in 2020 (GGR-20) and beyond.

In summary, the GGR-18 censusing rally produced a population estimate of 2,812±171 for

Grévy’s zebra, indicating approximately 70% of the population has been included in the ID census

database. Furthermore, the 2018 population of reticulated giraffes in Kenya is estimated to be

2,309±332. These estimates are consistent with previous sampling counts and provide a new

image-based ID database for historical trends.

6.3.1 Lessons Learned

Having completed three successful events, having developed both logistic support methods for

running the events, and having new computer vision/machine learning algorithms for analyzing the

resulting image data, we conclude this chapter with a discussion of lessons learned about applying

photographic censusing in the real world. For example, the prototype photographic censusing event,

the Great Zebra & Giraffe Count (GZGC) [2], was marred by metadata synchronization issues (no

GPS-enabled cameras), an inability to eliminate problematic annotations (no CA for incidental

matching), relied exclusively on human decision making for detections (no pre-trained models)

and pairwise review (no VAMP), had no concept of ID curation or consistency checks (no Graph

ID or LCA), did not know beforehand how helpful citizen scientists were going to be at image

collection (no established baseline), and took three months of hand-crafted analysis (no existing

tooling or software). These problems translate directly into a high logistical burden on conservation

administrators and, if left unaddressed, would undercut photographic censusing as an attractive

alternative to more invasive monitoring methods.

Since our initial start in 2015, however, the methodology for photographic censusing has

dramatically improved. The lessons that have been learned have translated directly into a proven,

end-to-end system that the Kenyan government is actively using to track animal populations. The

challenges encountered during the GZGC, the GGR-16, and the GGR-18 – emphasizing that some

were significant barriers – offered a guiding framework for designing a more robust, reliable,

verifiable, automated, sustainable, and repeatable methodology. With the conclusion of this chapter,
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let us review some of the most influential takeaways and high-level recommendations from this

concerted and sustained research effort:

• Citizen Science - the completed photographic censusing events have demonstrated that

distributing data collection for specific ecological research is highly effective. Furthermore,

incorporating volunteers is a natural way to engage with a local community with science

projects. When required, any training procedures should focus on being easy-to-understand

and, ideally, should fit onto a single page. The presented research has shown that citizen

scientists can quickly learn and conform to specific and focused data collection goals.

• On-the-Ground Participation - there is little substitute when performing a photographic

census for on-the-ground participation of the principal investigators. The nuances of dis-

tributed data collection are hard to predict and may significantly impact the effectiveness of

the overall event. Furthermore, participating in the photographic census in-person allows

for engagements with conservancy managers, park rangers, and field ecologists, who may

be mandated by law to maintain accurate population estimates. Establishing relationships

with these science brokers is crucial because it 1) allows for an accurate assessment of the

correct geographical coverage area to capture the known range for the species of interest and

2) provides a touch-point for setting up a routine and secure exchange of the latest ecological

data as it is collected. Lastly, engaging with local data brokers and policymakers helps prevent

claims of “exporting” the data from the conservation area, depriving a local entity of their

sense of agency and self-determination in conservation action. Furthermore, establishing

productive partnerships with ecologists is an ethical and sustainable way to collect animal

data for ML research.

• Local Infrastructure - it is essential to consider and be aware of the local infrastructure

(e.g., power, internet, cell service) and its limitations during a photographic censusing event.

Dispatching photographers into remote areas may have inherent safety concerns, and the final

aggregation of the collected data should be based on a reliable mechanism. For example,

having intermittent access to stable power may prioritize battery-powered laptops for the

event administrators. Likewise, ecology research for endangered species can be performed in

areas without reliable or fast access to the Internet. This limitation means that communication

with cloud-based servers may not be available, and the ML processing must be delayed or

done locally with power-hungry, high-performance GPUs.
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• Ease of Participation - it should be easy for a volunteer to participate, with minimal require-

ments on the camera hardware. The only significant restriction for proper synchronization is

having at least one GPS-enabled camera within a party of photographers. This requirement

could be satisfied with a smartphone and, ideally, precludes the need for specialized camera

trap hardware, access to planes, or other complications like veterinary licensing. In addition,

a detailed aggregation and synchronization plan should be established prior to the data col-

lection event. Furthermore, this plan should include details on properly cleaning, sanitizing,

and discarding inappropriate images that may be accidentally contributed. Lastly, using

registration cards allows for large numbers of participants to contribute data with minimal

record-keeping and the need for real-time coordination.

• Ease of Scale - a photographic census is designed to have a fixed geographic area sampled

on two consecutive days. The participation of photographers should be structured such that

minimal to no coordination is required between photographers. For example, large sampling

areas can be broken up into zones to ensure uniform coverage. Increasing the sampling

density for a given area simply requires assigning more participants. After the two days of

the event, all of the image data will need to be physically collected at a centralized location or

otherwise submitted to the administrators for aggregation.

• Open Populations - photographic censusing is designed for open animal populations where

the actual number of individuals is not known. While censusing open populations means

a formal validation of the results is not possible, the methodology has produced results

consistent with historical estimates for multiple species in Kenya. Furthermore, no inherent

limitation would make photographic censusing incompatible with closed populations for

more precise evaluations.

• Data Wrangling - after collecting the image data from photographers, there has always been

a non-trivial step of cleaning, organizing, and otherwise preparing the raw data for machine

learning processing. This process is typically done manually (e.g., copying images off an SD

card into a folder) and is subject to human errors and poor standardization. The aggregated

imagery might also require large amounts of storage, and the logistics of transferring and

backing up the entire censusing event should be considered carefully. Another challenge is

when photographers forget to take their synchronization image, requiring a manual process to

establish the internal time for that participant’s camera. In some instances, this synchronization
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can only occur after the animal IDs have been fully assigned. A camera’s time offset can be

approximated by triangulating the speed consistency checks across multiple animals.

• Bootstrapable Machine Learning Components - the machine learning components that are

used throughout the process are meant to be bootstrapable (i.e., trainable from scratch without

access to an appropriate pre-trained model). Thus, all detection pipeline components can be

trained with relatively small labor (estimated to be approximately 1,000-2,000 hand-annotated

images) and do not require a fully segmented ground-truth. In practice, a small team (1-5

people) of reviewers can gather all of the required detection ground-truth data in about a

day. Furthermore, it is recommended to implement web-based tools for multiple workers to

contribute ground-truth data simultaneously.

• Animal Detection - the detection pipeline components, Census Annotations, and Census

Annotation Regions all function as a way to automate the conversion of raw collected imagery

to relevant annotations. The task of “animal detection” as a high-level process functions

as an aggressive filter and only allows easily identifiable and comparable annotations to be

considered by the ID curation process. The proposed detection components in this dissertation

are designed to be modular and standalone, allowing them to be replaced without needing to

modify other components in the pipeline. These components do not need to achieve state-of-

the-art performance on their respective tasks because their primary goal is to reduce work.

For example, the task-specific goal for bounding box regression is to reduce the L2 regression

error, but there is an overriding goal to decrease the incidence rate of incidental matching.

Furthermore, we do not need the best and most up-to-date detectors computer vision offers to

calculate an accurate population estimate. Lastly, not all detections are equally important (i.e.,

missing a blurry background animal is not an error), and the detection components should be

optimized for the specific purpose of filtering out incompatible, unidentifiable, incomparable,

or otherwise problematic annotations.

• Human Verification - a critical determination for a new candidate species is if a human can

accurately and timely tell if two annotations show the same individual or not. For example,

performing a photographic census on the common American red squirrel is likely not very

productive because people have a hard time telling two squirrels apart. As such, the utility

and accuracy of any photographic census are explicitly tied to how accurately a human can

correctly verify potential matched pairs.
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• Continual Curation - selecting which curation algorithm to use is vital, as its implementation

details can significantly influence automation. For example, the Graph ID algorithm [13] was

found to be too rigid, too iterative, and too quick to explicitly enforce consistency, leading

to the need for many thousands of additional reviews. Alternatively, the LCA algorithm

is more appropriate for photographic censusing because it allows for qualitative decisions

that do not block the processing workflow, which dramatically reduces the need for human

effort while maintaining accuracy. Furthermore, a photographic census produces a consistent

and highly-reliable database of animal IDs but may start from different underlying database

states. For example, a photographic census may be started with an empty database, a sizeable

pre-existing database that has already been thoroughly curated, or a pre-existing database with

many unresolved issues (i.e., merges, splits, consistency checks). The ID curation algorithm

must be capable of handling these different starting conditions.

• Bootstrapable ID Databases - large-scale animal ID databases are rare, and photographic

censusing is an end-to-end process that facilitates the creation of large, highly-consistent

databases for animal ID research. Furthermore, some of the newest and most accurate machine

learning approaches for re-identification (i.e., triplet loss) need to be trained on an existing

database of IDs. This limitation means that approaches that do not rely on deep learning (e.g.,

HotSpotter [261], VAMP [13], CurvRank [262], and even Graph ID [13]) are required to

enable starting an ID database from scratch. Once a critical mass of IDs has been gathered,

these tools can be replaced for more advanced and accurate approaches like PIE [263]. Lastly,

from experience, it is important not to underestimate the time and challenge it will take to

collect and curate reliable animal ID data for computer vision research.

• Reporting ID Ranking Performance - there is often a disconnect with how animal ID ranking

performance is standardized and reported. For example, it is crucial to consider the underlying

distribution for the number of annotations per name, the percentage of singletons in the

database, and the time between sightings. As a general rule of thumb, it is recommended that

ID ranking and recall performance be reported as the average percentage for all annotations

in a database for top-1, top-5, top-k. Any experimental evaluation should start by defining a

fixed set of annotations where each animal ID has a minimum of 2 annotations, a maximum of

5 annotations, and a minimum of 24 hours between any pair of its annotations. This structure

guarantees that 1) there is always a correct answer to be found in the top-1 rank, 2) that an



214

over-sampled name does not improperly skew the reported recall performance, and 3) that

trivial matches separated by seconds or minutes are removed. Furthermore, the performance

should be reported as the average across all annotations (i.e., annotation recall) and all names

(i.e., name recall).

• Ownership & Security of Animal IDs - it is essential to consider the ethics of claiming own-

ership of an animal’s identification. There is an inherent obligation to protect an endangered

species when performing an ecology study. It includes being responsible for how sensitive

metadata is accessed and requires a willingness to embrace collaboration opportunities with

other researchers. For example, it would be unethical for a researcher to claim exclusive

ownership of an animal’s ID to the detriment of more effective conservation action and

insight. Stated simply: a wild animal’s ID does not belong to you, it belongs to the animal

that is facing extinction. Likewise, careful consideration for sensitive metadata (e.g., GPS

locations, timestamps) should be paid for poached and critically endangered species, as a

comprehensive ID database is a phenomenal surveillance tool for bad actors. A photographic

census administrator’s responsibility is to adequately safeguard any sensitive information to

protect the life, health, and unique identity of any endangered animal.

• Extensibility & Sustainability - the real-world reality of photographic censusing is that

it is currently a highly-specialized endeavor, dependent on advanced computer science

and computer vision expertise. Therefore, it is imperative to consider hosting all code

under a permissive open-source license and with a freely available repository service. In

addition, the publication of free pre-trained models offers an opportunity for collaboration

and reproducing results. Lastly, the financial reality of machine learning-powered ecology is

currently dependent on support from governments, NGOs, not-for-profits, private industry

grants, and philanthropic foundations. For example, this dissertation focuses heavily on just a

single species (Grévy’s zebra) because it takes so much time, energy, and money to collect

and curate good ID datasets like the GZCD. Therefore, the lack of a mature, self-sustaining,

open-source community for automated wildlife monitoring represents a substantial existential

crisis for the long-term adoption of photographic censusing.

In conclusion, this dissertation proposes a new paradigm for animal population monitoring; the high

level of accuracy and automation that has been demonstrated will ideally transform ecology into a

data-driven science.
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CONCLUSION

The proposed photographic censusing methodology encompasses the entire process from start

to finish: from the engagement of citizen scientists for decentralized image collection; to the

parallel annotation of new training data; to the training and inference of automated decision making

with computer vision algorithms; to the final population estimates with their valuable individual

ecological, social, and temporal data. Furthermore, this dissertation demonstrates the effectiveness

of a detection pipeline for filtering raw images into identifiable annotations and reducing errors by

mitigating common identification errors. Any errors that are made by the automated algorithms

can also be factored into the final population estimate. Thus, the power of photographic censusing

is driven by comprehensive detection and identification computer vision pipelines and a thorough

understanding of how modern ecological studies are performed in the field.

7.1 Contributions

The research presented in this dissertation is heavily applied and represents the culmination

of over a decade’s worth30 of computer vision and ecology research. Furthermore, the trajectory of

this work has been heavily influenced by the real-world implications and implementation details of

performing photographic census events on endangered animal populations.

1. Animal Detection Pipeline - a comprehensive detection pipeline for animals for use in

photographic censusing. The pipeline is designed to be easily bootstrapable for new species

with relatively minimal annotation work. The output of the detection pipeline is customized

for the task of animal instance recognition and is comprised of the following modularized

components:

(a) Whole Image Classification (WIC) - A CNN that performs a multi-label classification

problem for high-level filtering

(b) Localization - A CNN that performs bounding box localization and classification to find

animals

(c) Annotation Classification (Labeler) - A CNN that performs a single-label classification

problem for annotating species and viewpoint

30and has required the focus of more than one Ph.D. dissertation, see [13].
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(d) Coarse Background Segmentation - A FCNN that attempts to provide an approximate

segmentation for a given species to mask out background pixels.

(e) Annotation of Interest - We present the concept of AoI and evaluate its effectiveness for

filtering irrelevant annotations in an identification pipeline.

(f) Specialized Needs - Additional detection components to rotate annotations or find

animals from overhead imagery are useful for specific needs.

2. Census Annotation - a novel concept that is designed to reduce incomparable and incidental

matching during animal identification.

(a) Census Annotation (CA) - selects annotations that are identifiable and show a consistent

part of the animal body, reducing the amount of human work that is needed during a

photographic census.

(b) Census Annotation Region (CA-R) - reduces the impact of incidental matching by

creating more focused regions within existing detected Census Annotations, drastically

reducing the amount of human effort by increasing the separability of automated ID

verifiers

3. Photographic Censusing - a comprehensive process for building an animal ID database

from scratch, relying on the concepts of verification and the continual curation of IDs. The

formal definition also includes a new Automated Lincoln-Petersen Estimator to better estimate

populations when machine learning methods are involved.

4. Photographic Censusing Rallies - an organized data collection event where “citizen scientist”

volunteer photographers are trained and tasked to take photos with GPS-enabled cameras over

two back-to-back days. The results of the Great Grévy’s Rally 2016 (GGR-16) and Great

Grévy’s Rally 2018 (GGR-18) censusing rallies are significant contributions of this work.

5. Animal Datasets - new public datasets for animal detection and ID research. Common public

datasets for computer vision tasks like object detection generally do not provide associated

ID information when they include boxes of animals. Likewise, animal ID datasets often only

include pre-cropped images of animals and rarely focus on herding species.

(a) WILD - a dataset with six species containing comprehensive bounding boxes and AoI

flags on challenging scenarios.
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(b) DETECT - a Plains and Grévy’s zebra only database focusing on even more visual

nuances for detection.

(c) Grévy’s Zebra Census Dataset (GZCD) - a dataset of Grévy’s zebra that focuses on the

problem of incidental matching.

(d) Great Grévy’s Rally 2016 (GGR-16) - A first-of-its-kind photographic census of the

Grévy’s zebra in Kenya, producing a baseline population estimate.

(e) Great Grévy’s Rally 2018 (GGR-18) - A second census of the Grévy’s zebra and

reticulated giraffe in Kenya, providing a population estimate of Grévy’s zebra with

improved sampling and measuring the increase of the population.

7.2 Future Work

The field of automated wildlife conservation is in its infancy, and there seems to be a lack of

widely available animal ID datasets. Building large-scale datasets on animals with the first principle

of ID seems to be the fastest way to unlock the interest within the larger research community on

animal detection and re-ID. Furthermore, my hope is that the analysis provided on the Grévy’s zebra

species has demonstrated the overwhelming benefits of photographic censusing as a population

monitoring methodology, where the principles that have been described weave a general framework

that can be easily adapted for other endangered species. If both cases are true, then the next step is –

quite simply – to get to work protecting some animals that need our help to survive.

The study of endangered species is tricky when state-of-the-art research methods also pro-

duce fantastic tools for poachers. The availability of an ID database for conservation policy has

the apparent downside of being a clearinghouse for the size and location of a given population.

Continued research should be focused on one-shot learning to reduce the exposure of a species to

only what is essential for machine learning training. A focus on one-shot or few-shot learning also

comes with the obvious benefit of not building animal population monitoring systems that are brittle

to a low distribution of sightings.

A major missing component of this dissertation is a robust analysis of true segmentation

methods. The ability to segment a mother and foal is likely the only way that problem will be

solved long-term. Likewise, some species are poor candidates for bounding boxes (e.g., giraffes)

because they fill the annotations with a lot of background noise. The downside is that segmentation

algorithms have historically been very data-hungry to get good performance, but the future looks
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bright for more accurate filtering methods prior to ID.

The definition of a given species’ Census Annotation Region relies primarily on human

intuition and depends to some extent on the ranking and verification algorithms used during ID

curation. There needs to be a more principled way to locate the visual information needed for

effective automated ID curation. Related work on attention mechanisms with deep convolutional

neural networks may provide a mechanism for automatically defining these regions on a per species

basis. Furthermore, there may be a need to decouple the results of an ID algorithm with the

visualization of its suggested correspondences. For example, the PIE algorithm does not natively

visualize the matching regions between two annotations that are found to be close in its learned

embedding space. While a given ID algorithm may offer useful intermediate primitives to visualize,

this cannot be guaranteed, and a more standardized visualization approach may be possible.

The process of photographic censusing is presented here as a comprehensive, bootstrappable,

and end-to-end option for wildlife conservation managers. The motivating use case for this dis-

sertation has been the management of large megafauna populations in Kenya. As such, one of the

core implementation decisions with photographic censusing rallies is that it relies on two days of

collection. This two-day structure attempts to follow the guidance of historical surveys done in

that country, but it is not the only valid time frame option for a census. There exists a clear need

for more flexible collection options because some species cannot be comprehensively censused

in a single day. For example, whale watching seasons typically involve several months of image

collection and cannot be expected to cover the entire migratory range in only a handful of days.

Instead, photographic censusing needs to be extended to support a longer, more continual collection

of images. The Petersen-Lincoln estimator is not compatible with such a design, so additional

statistical methods and validating experiments are needed to apply this work more broadly.

Finally, the research studies that have successfully used citizen science efforts have almost

exclusively been focused on species classification and do not meaningfully engage with ID verifica-

tion. For example, there does not seem to exist experimental data on how well the general public can

verify if two zebra are the same in a fixed time, or two beluga whales seen from above, or the flippers

of two sea turtle sightings. Furthermore, there is no established international standard for how

photographic censusing should be performed, focusing on less invasive collection and automated

analysis. A recognized portfolio of species that are good candidates for photographic re-ID and

recommendations for how best an average citizen may safely collect and contribute valuable data

would unlock new avenues for data collection.
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APPENDIX A

GGR 2018 PARTICIPANT GUIDE

A.1 Welcome to the 2018 Great Grévy’s Rally

On the 27th and 28th of January 2018, you will be part of a historic event that will take place in

northern Kenya. Within 45 censusing blocks spread across the country, scientists, local community

members, and citizens will drive, fly, and take photographs. The area that you will help to cover

consists of the core range for the Grévy’s zebra and reticulated giraffe, which are the two target

species of the Rally. Only in Kenya has such an extensive census by the public, covering over

25,000 KM2, ever been completed.

Our team pioneered such a massive effort during the first Great Grévy’s Rally in 2016, when

it was estimated that 2,350 Grévy’s zebra roamed the semi-arid regions of Kenya. This year we are

expanding the Rally to 1) include more participants and 2) add the reticulated giraffe, a species the

IUCN has recently listed as threatened. The tens - or hundreds - of thousands of pictures that you

will help to collect over the next two days will be uploaded to Wildbook and given to image analysis

algorithms. Our algorithms work to identify each unique animal by performing a “sight-resight”

analysis, a non-invasive variant of the traditional “mark-recapture” techniques used by population

biologists. Using the visual appearance of Grévy’s zebras with their naturally barcoded stripes and

the distinctive polygon patterns on reticulated giraffes, scientists will be able to estimate the size of

animal populations within each county and across the entire nation. We will also use your pictures

to determine the age and sex of the animals so that we can estimate the health and sustainability

of the population. By being a volunteer for the Rally, your contributions will go directly towards

protecting these animals and ensuring the future of their species.

For the Great Grévy’s Rally to succeed in 2018, it is essential that each participant follow

some simple rules and guidelines. This document will introduce you to your GGR camera (and

camera supplies) and provide examples of pictures to take.

A.2 Hardware Tote Bag

Your tote bag contains the following:

• A plastic camera bag with:

– A Nikon COOLPIX S9900 digital camera, with a carrying case
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– USB charging cable and base charger

– A Kenyan plug adaptor OR USB car charger

– A CAMERA ID CARD (with the GGR logo, QR code, a number and letter).

The CAMERA ID CARDS are used to organize all of the different cameras and their images during

the Rally. You will be asked to take a photograph of your CAMERA ID CARD at the beginning of

each day, synchronized with all other cameras in your vehicle (if any), so please make sure it is not

misplaced.

• This participant guide packet, which includes:

– Introduction to your GGR Camera

– Use of Personal Digital Cameras

– Rally Day Start - the procedure to follow at the start of each day

– Turning on Your GGR Camera’s GPS Function

– Examples of Good and Bad Pictures - a green/red reference sheet

A.3 Introduction to Your Camera

Each vehicle has been assigned a single, numbered GGR camera with built-in GPS.

DO NOT remove the camera battery. The time and date settings have been set on the

camera to Kenyan time. If the battery is removed, then the camera will revert to default settings. If

the time and date need to be reset, refer to page 13 of the camera manual.

The D-Pad is the circle directly above the MENU button with four icons and an OK button in

the center.

To prepare for your first day of the Rally, take the following steps:

1. Make sure the satellite icon is visible on the bottom left of the display (above the battery

icon), which indicates that the GPS function has been turned on. A red satellite icon means

that the camera has not found sufficient GPS satellites to function correctly. Take the camera

outside with a clear view of the sky and wait 5 minutes to acquire the GPS signals.

2. When the camera is fully connected, white boxes will appear next to the satellite icon. See

the guidelines below:
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Figure A. 1: GGR-18 participant guide, image 1.

If there is NO satellite icon on the display, follow the below instructions for Turning on Your

GGR Camera’s GPS Function

A.4 Use of Personal Digital Cameras During the Rally

If you are a passenger in a GGR vehicle and want to use a personal digital camera, please

follow the instructions below. Once these steps are complete, you can continue with the Rally Day

Start procedure just like other GGR cameras.

1. Ensure your camera is fully charged and bring extra batteries, if possible.

2. Set the time and date to Kenyan time (GMT+3)

3. Shoot in JPEG mode only (no RAW). Pictures from film cameras can not be used.

4. If your camera has a Digital Zoom function, turn it off or only use optical zoom

5. Obtain a CAMERA ID CARD with the letter B, C, D, E, or F from your GGR driver. Be

sure to take a photo of your card at exactly the same time as your driver takes a picture of

their card. These simultaneous pictures will sync your pictures with the GPS records that the

driver’s GGR camera will create.

A.5 Rally Day Start

Start Here Each Morning of the Rally
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A.5.1 Start of the Day’s Rally - Start GPS Log

1. If you are using a personal camera, continue to Step (2) on next page.

2. Press the MENU button to open the camera menu

3. Push left on the D-Pad to select a menu page

4. Push down on the D-Pad 3 times to highlight the GPS satellite icon

5. Push the OK button

6. Push down on the D-Pad 3 times to highlight Create Log

7. Push the OK button. Your screen should look like this:

Figure A. 2: GGR-18 participant guide, image 2.

8. If the Log Interval is already set to 10s, skip to step 12.

9. Push down on the D-Pad 1 time to highlight Log Interval

10. Push the OK button. Your screen should look like this:
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Figure A. 3: GGR-18 participant guide, image 3.

11. Push up on the D-Pad 1 time to highlight 10s

12. Push the OK button

13. Push up on the D-Pad 1 time to highlight Start Log

14. Push the OK button

15. Push down on the D-Pad 1 time to highlight Log data for next 12 hrs

16. Push the OK button

17. Your screen should look like this:

Figure A. 4: GGR-18 participant guide, image 4.

18. Now your tracking log has started!
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19. Verify that the highlighted menu item at the bottom says End log and that the duration and

interval numbers are correct

(a) NOTE: DO NOT select End log (this is done at the end of the day)

20. Press the MENU button to close the camera menu

21. The satellite icon on the bottom left of display (above the battery icon) should display the

word LOG to indicate that GPS logging is turned on

A.5.2 Take a Synchronized Picture of All Camera ID Cards

1. At the same time, all cameras in the vehicle will take a single, synchronized picture of their

assigned CAMERA ID CARD. Each camera should take a picture of their assigned card at

the start of every day.

2. Begin a countdown for this picture by having the driver say, out loud, “3-2-1 SNAP!”. A

reminder to take this picture is shown at the bottom of the card.

3. The GGR camera should always have a CAMERA ID CARD with the letter A

Figure A. 5: GGR-18 participant guide, image 5.

4. If there is more than one photographer in a vehicle, each camera is assigned a CAMERA ID

CARD. All additional cameras should use the letters B, C, D, E, or F, with A being reserved
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for the (only or primary) GGR camera in the car.

5. Save your CAMERA ID CARD for it is needed at the start of each day of the Rally.

A.5.3 Start your Rally!

Go drive (or fly) to find Grévy’s zebras and reticulated giraffes in the wild!

A.5.4 Taking Pictures of Grévy’s Zebras and Reticulated Giraffes

1. Photographing the animals

(a) Group Photos - As you approach, take a photo of the Grévy’s zebra herd or the tower

of giraffes from a distance. Try to capture the entire herd using only 1 or 2 images. Do

this even if a single Grévy’s zebra or reticulated giraffe is seen alone.

(b) Individual Photos - After you have taken the group photo from a distance, approach

the group of animals to get a closer look and take photos of each individual animal.

2. Target one animal at a time. Take a picture of only the RIGHT side of the animal (facing

or walking to the right). To ensure the best possible chance of identifying the animal, try to

put the animal in the CENTER of the image and try to photograph the entire animal (not just

a piece of it). Refer to the green/red reference sheet for good and bad examples.

3. Repeat Step 2 for each Grévy’s zebra or reticulated giraffe seen in the group. You should aim

to take 3-4 different RIGHT side pictures of each zebra or giraffe as it moves around. Don’t

worry if an animal moves away or behind something (bushes or other animals) while taking

photographs – the most important thing is to get at least one RIGHT side photograph for each

animal in the group.

4. Be patient! The animals will be curious about you and will move around slowly. Try to

wait for when you can clearly see the RIGHT side of the animal without harsh sunlight

glare. Avoid taking pictures of animals that are significantly behind bushes or other animals.

You may need to relocate yourself to find a better spot to get good, RIGHT side photos of

individuals.

5. If after a while you cannot get any pictures of the RIGHT side or if the animals start to run

off, then take any picture possible.
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Remember: “Right is Right!”

Only take pictures of the RIGHT side of a zebra or giraffe.

A.5.5 End of the Day’s Rally - End GPS Log

1. If you are using a personal camera, continue to Step (6) at the bottom of page

2. Press the MENU button to open the camera menu

3. Push left on the D-Pad to select a menu page

4. Push down on the D-Pad 3 times to highlight the GPS satellite icon

5. Push the OK button

6. Push the OK button to highlight menu item Create log

7. Push the OK button

8. Your screen should look like the image below. Push the OK button on the (already) highlighted

menu item End log.

Figure A. 6: GGR-18 participant guide, image 6.

9. Your screen should look like the image below. Push the OK button on the (already) highlighted

menu item Save log



253

Figure A. 7: GGR-18 participant guide, image 7.

10. This operation could take a few minutes to complete, DO NOT turn off the camera during

this process. The screen may or may not change while it is saving the location log to the SD

card. Once it is complete, a message will appear across the screen saying the log has been

saved.

11. Push the OK button

12. Press the MENU button again to close the camera menu

A.5.6 Prepare for Day 2 of the Rally

1. Turn off your camera

2. Charge your camera batteries overnight

3. Save your CAMERA ID CARD. You will need to take a synchronization picture of your card

at the start of the second day of the Rally.

A.6 Turning on Your GGR Camera’s GPS Function

1. Press the MENU button on the bottom right of the back of the camera (next to the display) to

open the camera menu

2. Push left on the D-Pad to select a menu page

3. Push down on the D-Pad 3 times to highlight the GPS satellite icon

4. Push the OK button (located in the center of the D-Pad)
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5. Push the OK button on the (already) highlighted men item Location data options

6. Push the OK button on the (already) highlighted menu item Record location data...OFF

7. Push up on the D-Pad to highlight On next to the satellite icon, as seen in the screen below:

Figure A. 8: GGR-18 participant guide, image 8.

8. Push the OK button

9. Verify that the menu item says Record location data. . . ON

10. Press the MENU button again to close the camera menu

11. A satellite icon should appear on the bottom left of the display (above the battery icon), which

indicates that the GPS function has been turned on. A red satellite icon means that the camera

has not found sufficient GPS satellites to function correctly. Take the camera outside with a

clear view of the sky and wait 5 minutes to acquire the GPS signals.

12. Once the camera is fully connected, white boxes will load next to the satellite icon. See the

guidelines below:
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Figure A. 9: GGR-18 participant guide, image 9.



APPENDIX B

CHAPTER ATTRIBUTIONS & COPYRIGHT PERMISSIONS

B.1 Copyright Permissions for Chapter 1

J. Parham and C. Stewart, “Detecting plains and Grevy’s zebras in the real world,” in IEEE

Winter Conf. Applicat. Comput. Vis. Workshops, Lake Placid, NY, USA, Mar. 2016, pp. 1–9.

File Name “Parham 2016 WACV - Detecting Plains and Grevy’s

Zebras in the Real World - Copyright.pdf”

Copyright IEEE 2016
File Type Portable Document Format (PDF)
File Size 66 KB

J. Parham, J. Crall, C. Stewart, T. Berger-Wolf, and D. I. Rubenstein, “Animal population

censusing at scale with citizen science and photographic identification,” in AAAI Spring

Symp., Palo Alto, CA, USA, Jan. 2017, pp. 37–44.

File Name “Parham 2017 SSS AISOC Paper - Animal Population

Censusing at Scale with Citizen Science and

Photographic Identification - Copyright.pdf”

Copyright AAAI 2017
File Type Portable Document Format (PDF)
File Size 120 KB

256



257

B.2 Copyright Permissions for Chapter 2

J. Parham and C. Stewart, “Detecting plains and Grevy’s zebras in the real world,” in IEEE

Winter Conf. Applicat. Comput. Vis. Workshops, Lake Placid, NY, USA, Mar. 2016, pp. 1–9.

File Name “Parham 2016 WACV - Detecting Plains and Grevy’s

Zebras in the Real World - Copyright.pdf”

Copyright IEEE 2016
File Type Portable Document Format (PDF)
File Size 66 KB

J. Parham, J. Crall, C. Stewart, T. Berger-Wolf, and D. I. Rubenstein, “Animal population

censusing at scale with citizen science and photographic identification,” in AAAI Spring

Symp., Palo Alto, CA, USA, Jan. 2017, pp. 37–44.

File Name “Parham 2017 SSS AISOC Paper - Animal Population

Censusing at Scale with Citizen Science and

Photographic Identification - Copyright.pdf”

Copyright AAAI 2017
File Type Portable Document Format (PDF)
File Size 120 KB

J. Parham et al., “An animal detection pipeline for identification,” in IEEE Winter Conf.

Applicat. Comput. Vis., Lake Tahoe, CA, USA, Mar. 2018, pp. 1–9.

File Name “Parham 2018 WACV - An Animal Detection Pipeline for

Identification - Copyright.pdf”

Copyright IEEE 2018
File Type Portable Document Format (PDF)
File Size 67 KB



258

B.3 Copyright Permissions for Chapter 3

J. Parham and C. Stewart, “Detecting plains and Grevy’s zebras in the real world,” in IEEE

Winter Conf. Applicat. Comput. Vis. Workshops, Lake Placid, NY, USA, Mar. 2016, pp. 1–9.

File Name “Parham 2016 WACV - Detecting Plains and Grevy’s

Zebras in the Real World - Copyright.pdf”

Copyright IEEE 2016
File Type Portable Document Format (PDF)
File Size 66 KB

Tables 3.2, 3.3
Figures 3.1, 3.3, 3.9, 3.10, 3.11

J. Parham et al., “An animal detection pipeline for identification,” in IEEE Winter Conf.

Applicat. Comput. Vis., Lake Tahoe, CA, USA, Mar. 2018, pp. 1–9.

File Name “Parham 2018 WACV - An Animal Detection Pipeline for

Identification - Copyright.pdf”

Copyright IEEE 2018
File Type Portable Document Format (PDF)
File Size 67 KB

Tables 3.1
Figures 3.2, 3.4, 3.8, 3.12, 3.13, 3.14, 3.16, 3.17, 3.21, 3.22



259

B.4 Copyright Permissions for Chapter 6

J. Parham, J. Crall, C. Stewart, T. Berger-Wolf, and D. I. Rubenstein, “Animal population

censusing at scale with citizen science and photographic identification,” in AAAI Spring

Symp., Palo Alto, CA, USA, Jan. 2017, pp. 37–44.

File Name “Parham 2017 SSS AISOC Paper - Animal Population

Censusing at Scale with Citizen Science and

Photographic Identification - Copyright.pdf”

Copyright AAAI 2017
File Type Portable Document Format (PDF)
File Size 120 KB

Tables 6.1, 6.2
Figures 6.5, 6.9, 6.6, 6.10, 6.17, 6.18

J. Parham, C. Stewart, T. Berger-Wolf, D. Rubenstein, and J. Holmberg, “The Great Grevy’s

Rally: A review on procedure,” in AI Wildlife Conserv. Workshop, Stockholm, Sweden, Jul.

2018, pp.1–3.

File Name “Parham 2018 ICJAI-AIWC 2018 - The Great Grevy’s

Rally - A Review on Procedure - Copyright.pdf”

Copyright IJCAI 2018
File Type Portable Document Format (PDF)
File Size 196 KB

Tables 6.1
Figures 6.7, 6.8


