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Abstract

Photographic censusing can be partly automated by

leveraging the power of computer vision detection algo-

rithms. Detecting zebras in the real world can be chal-

lenging due to varying viewpoints of the animal, natural

and artificial occlusions, and overlapping animals. To ad-

dress these challenges, we evaluate three detection algo-

rithms: Hough Forests by [8], the YOLO network by [20],

and Faster R-CNN [21]. We train the detectors on a soon-

to-be-released dataset of 2,500 images containing 3,541

bounding boxes of plains zebras (Equus quagga) and 2,672

bounding boxes of Grevy’s zebras (Equus grevyi). The de-

tection errors are analyzed by species, viewpoint, and den-

sity (the number of bounding boxes per image). The best de-

tector in our evaluation reports a detection mAP of 55.6%

for plains and 56.6% for Grevy’s.

1. Introduction

A population census is an essential first measure for

judging the general health of a species. A population count

is integral to ecology, where the endangered status of a

species is dictated by the number of remaining animals.

However, a census can be difficult to obtain manually due to

time and resource limitations. A photographic census that

leverages computer vision techniques could help with this

daunting, yet important, task. To focus our discussion, we

will review the process of performing a photographic cen-

sus on images of plains zebras (Equus quagga) and Grevy’s

zebras (Equus grevyi), as seen in Figures 1 and 2.

Once images have been collected, the next step in pro-

ducing a photographic census is generating reliable bound-

ing boxes and species labels for each relevant animal. This

detection process is required to filter irrelevant images (e.g.

pictures with no zebras), to focus further processing on

only relevant image portions (i.e. coarse background elim-

ination), and to provide the rough number of animal sight-

ings. The removal of surrounding background has the ben-

efit of eliminating distracting information that could other-

wise confuse an identification algorithm. Therefore, the de-

Figure 1: Challenges of the detection problem for zebras in-

clude varying viewpoints, natural and artificial occlusions,

and overlapping animals. The image above shows 7 indi-

vidual zebras with 5 differing viewpoints and 5 occlusions

of differing severity. The highlighted animals are almost

completely occluded, but still clearly discernible.

tections and their quality play an important role in the over-

all quality of a photographic census by filtering input im-

ages and providing pre-processing for identification. This

is the problem we focus on in this paper.

The detection problem as applied to photographs of ze-

bras has several real-world challenges: varying viewpoints,

natural and artificial occlusions, overlapping animals, non-

rigid body structures, and large changes in visual appear-

ance (e.g. genetic variations, dust, scarring). While these

are not unique to this particular application, they are quite

pronounced. Looking at Figure 1, the head of the high-

lighted zebra (red) is clearly visible, but the rest of the

animal is almost completely occluded save a few of its

legs. The cut-off animal on the far right (blue) only has

a small section of neck visible whereas its neighbor to the

left is facing completely away from the camera. Need-

less to say, zebras in the real world can be frustratingly

uncooperative with respect to our task of trying to detect

them. These enhanced challenges elevate the problem to

a degree of difficulty not often seen in standard computer



vision benchmarking competitions like PASCAL VOC [5]

and ILSVRC [23].

To address these challenges, we apply two different de-

tection approaches: Hough Forests and Convolutional Neu-

ral Networks (CNNs). Random forest algorithms are easy

to train due to having fewer hyper-parameters and built-in

regularization. The Hough Forests variant, in particular, is

somewhat resilient to partial and occluded objects due to its

voting scheme [7, 30]. CNNs have shown to perform well

on classification [14, 24, 26, 27], localization [4, 9, 24, 28],

and detection [11, 17, 20, 21] problems due to their abil-

ity to learn complex representations of supervised training

data. For these reasons, we evaluate a random forest-based

detector and two CNN-based detectors on images of plains

and Grevy’s zebras.

This paper has three main contributions: 1) to compare

three detection algorithms on real-world images of zebras,

2) to enumerate unsolved detection challenges in this con-

text, and 3) to provide implementation details for the detec-

tor currently used by IBEIS – the Image Based Ecological

Information System1 (see also [19]). We will soon be re-

leasing the first public version of the dataset used during

this evaluation. We also publish our Python bindings for

the Hough Forests implementation by Gall et al. [8]2 and

the YOLO implementation by Redmon et al. [20]3. The re-

mainder of this paper will begin by reviewing related work

in Section 2. A brief introduction to the different detec-

tor approaches will follow in Section 3. The experimental

evaluations are presented in Section 4 and conclusions are

drawn in Section 5. A comparative table of detections from

each of the three algorithms can be seen in Figure 6.

2. Related Work

The use of Hough Forests (i.e. Hough-transform random

forests) for object detection was demonstrated by Gall et al.

in [7]. The authors showed that random forests have advan-

tageous training properties and extend naturally to patch-

based image textures. They argue that the leaf nodes of

a random forest tree can be considered a “discriminative

codebook”, which they use to generate classification proba-

bilities. Furthermore, by training to optimize for both clas-

sification and regression within the same tree, they are able

to learn a spatial relationship of where a classified image

patch is likely located in relation to an object center. Their

idea is extended by Barinova et al. [1] to address occluding

objects. A more comprehensive analysis of Hough Forests

is presented in [8]. Others [3, 6, 31] have applied random

forests to face, pose, and action recognition. We evaluate a

customized version of the implementation introduced in [8].

1ibeis.org (accessed March 6, 2016)
2github.com/bluemellophone/pyrf
3github.com/bluemellophone/pydarknet

The literature for CNN-based detectors is vast and

rapidly evolving. For this paper, we focus on approaches

that integrate object localization directly into the detection

pipeline via some form of neural network. A localization

CNN is used by He et al. [11], the recent winners of the

ILSVRC 2015 object detection challenge, who used their

novel deep residual learning to train an extremely deep

CNN detector. Their approach was based on their previ-

ous Faster R-CNN detector [21], which used a novel Region

Proposal Network (RPN) for object localization in conjunc-

tion with their existing classification network from [9]. The

Faster R-CNN detector was also the winner of several tasks

in ILSVRC 2015. We analyze the detection performance of

off-the-shelf Faster R-CNN.

The usage of a localization network, however, is not

unique to [11] nor their RPN precursor. Other CNN-

powered salient object detectors have been introduced, in-

cluding Google’s DeepMultiBox [4], the “YOLO” (You

Only Look Once) network [20], and others [12, 13, 16, 32,

33]. The key insight to all of these approaches is that a

saliency localizer can perform well while being class ag-

nostic. This suggests that the saliency of an object can be

generalized within the neural network by training on class-

less bounding boxes. To generate final detections, the in-

termediate saliency bounding boxes are classified with an

additional, dedicated classification network. This saliency

generalization, as shown in [20], has benefits of extending

to unknown classes and abstract representations (i.e. paint-

ings) of known classes.

The insight behind YOLO – and what sets it apart from

the networks mentioned above – is that the bounding box

proposal network can be combined with the classification

network into a single network architecture. This integra-

tion, however, does come with downsides: a complex loss

function, additional hyper-parameters, an unpredictable er-

ror gradient, and the loss of fine-grained detection perfor-

mance. However, the ability to train YOLO as a unified

pipeline makes it advantageous for real-world applications

due to its efficiency and lack of additional machinery. Due

to their network consolidation, the authors of the YOLO

network were able to report real-time performance using

GPUs. For this evaluation, we also report the performance

of YOLO as a comparison against Faster R-CNN.

3. Approach

An overview of each algorithm we evaluate, along with

significant implementations details, is given below.

3.1. Hough Forests

Hough Forests are an ensemble of random binary trees.

Each tree attempts to optimize the performance of classifi-

cation and regression by performing a series of binary pixel

tests. The authors of [7, 15] demonstrate that training a ran-

ibeis.org
github.com/bluemellophone/pyrf
github.com/bluemellophone/pydarknet


(a) (b) (c)

Figure 2: Hough Forests test patches are extracted densely over a test image (a) and are classified using an ensemble of

random binary trees into a collection of leaves. Each leaf has a set of positive and negative patches given to it during training,

which are used to make weighted probabilistic Hough votes into an aggregate Hough image (b). The high-probability object

center peaks (white) are used to generate bounding box proposals (blue). The proposals are filtered with non-maximum

suppression to create the final detections (red). Compare the votes of the red and purple test patches in (a, b); the purple

votes are sporadic and do not accumulate whereas the red votes contribute to an object center. The blurring on peaks is due

to voting confusion.

dom forest tree in this combined fashion benefits both gen-

eralization and accuracy. The first pre-processing step of

training extracts a collection of small image patches (32×32
pixels) from the ground-truth in order to compose a large set

(60,000) of positive and negative training patches. Impor-

tantly, each positive patch records its relative offset to the

center of its corresponding object in the ground-truth.

During training, each tree is given the same set of

patches. Our implementation uses an ensemble of 10 trees.

Each tree generates tests that split the set at each non-leaf

node, which performs a random binary pixel test on each

image patch P . The test, as formulated in [8], is

testα,p,q,r,s,τ (P ) =

{

0, if Pα(p, q) < Pα(r, s) + τ

1, otherwise

(1)

where α is the channel of the image patch, (p, q) is a ran-

dom location in the patch, (r, s) is a different random loca-

tion in the patch, and τ is a threshold offset. Every node is

allowed to pick its own randomized test, randomly seeded

to promote diversity.

Every internal node samples randomly over the param-

eters α, p, q, r, s, τ to find the best binary test that mini-

mizes either the positive-negative classification error or the

positive-patch regression error. The node will minimize

(with p = 0.5) either the binary cross-entropy classification

error or the regression offset sum-squared difference error

(negative patches are ignored since, by definition, they have

no center offset to an object center). The binary tree builds

itself recursively until either a node is too deep in the tree

or has too few patches. During our training, each tree is

trained to a depth of 16 layers or creates a leaf when a node

has fewer than 20 patches.

During test time, each leaf node holds a collection of

positive and negative patches. A leaf’s positive class proba-

bility is computed as the percentage of positive patches out

of all the patches it received during training. Each posi-

tive patch in a leaf makes a weighted probabilistic vote to

where it thinks the center of the object is in the test im-

age. As shown in Figure 2, these Hough-transform votes

(a) are computed densely across the entire test image and

aggregated over multiple scales to generate a combined

Hough image (b). The bright white spots in the Hough

image indicates the probable locations of object centers.

Thresholded peaks are selected as candidate center propos-

als, object bounding boxes are derived from the locations

of patches that voted for the particular peaks (c, blue), and

non-maximum suppression is applied to produce the final

detection regions (c, red).

The Hough Forests detector has some distinct advan-

tages, chiefly that 1) it is easy to parallelize across multi-

ple CPUs for efficient parallel processing and 2) the voting

scheme will aggregate probabilities originating from any lo-

cation on an animal. For example, if only the face and neck

of a zebra are visible in an image, the face and neck tree

leaves will still make probabilistic votes for where it thinks

the center of a zebra should be. This voting scheme makes

Hough Forests resilient to occlusions and makes it an attrac-

tive solution to the challenges present in our dataset. How-

ever, the image patches are too small to learn precise local-

ization information. This results in a distinct blur of voting

confusion surrounding an object’s center in the Hough im-

age. Moreover, our formulation of Hough Forests is trained

as a binary classifier (one-vs-all) and therefore cannot na-

tively represent multiple classes within the same tree. This

poses a problem with representing multiple viewpoints of



the same species, as viewpoints have conflicting spatial rep-

resentations for an object’s “center”. This conflict causes

confusion during training and detection, which hurts accu-

racy.

The evaluated version of Hough Forests improves on the

efficiency and accuracy reported in [8] by adding OpenMP

multi-CPU parallelization, adding new image channels,

drastically increasing the number of binary tests performed

at each node during training, and making more intelligent

bounding box regression decisions with the coordinates of

voting patches. The details explained in this section are

meant to augment the summary in our previous work [19],

which used Hough Forests to detect plains zebras and Ma-

sai giraffes from photographs taken at the Nairobi National

Park in Nairobi, Kenya.

3.2. Faster RCNN

The Faster R-CNN network by Ren et al. [21] is the third

iteration of the R-CNN approach introduced by Girshick et

al. [9, 10]. Each iteration of the detector sports a simpli-

fied pipeline and speed improvements. The latter has trans-

formed R-CNN from a research tool into a viable, near-real-

time detector. For our evaluation, we use the off-the-shelf

Python bindings of [21].

The motivation behind Faster R-CNN is that the Selec-

tive Search [29] candidate proposal phase used by its pre-

cursors is a major speed bottleneck. To address this speed

problem, the authors reimplement the bounding box candi-

date proposal as a neural network and brand it as a Region

Proposal Network (RPN). The key insight to training Faster

R-CNN is that the RPN is a “separate” network from the

classification network inherited from [9], but to reduce pro-

cessing the two networks share most of their convolutional

filters. During training, the RPN and classifier are given

the same fixed proposals and the two networks alternate to

reach convergence. Both networks apply their updates in

turn to the shared convolutional filters.

During test time, these shared convolutional features are

only computed once. The RPN adds additional convolu-

tional layers on top of the shared filters to generate local-

ization predictions. The benefit of this architecture is that

the training is mostly unified, which dramatically increases

speed performance during both training and testing. Fur-

thermore, replacing Selective Search with the RPN also im-

proves accuracy. However, the branching top of the net-

work involves additional complexity during training and the

network still does not quite achieve real-time performance.

Our Faster R-CNN network runs at about 6 fps on high-end

GPUs. That being said, Faster R-CNN still boasts state-of-

the-art performance for detection [23]. The implementation

of Faster R-CNN seen in this evaluation is unmodified other

than training for 30,000 iterations (with the newer and faster

“end-to-end” scheme) on different classes. The training di-

Figure 3: The YOLO network is a unified architecture that

is trained top-to-bottom to minimize bounding box regres-

sion and classification error. In contrast, Faster R-CNN

has a separate Region Proposal Network (RPN) that pro-

poses salient object bounding box proposals, which are then

classified to produce class probabilities. Faster R-CNN is

trained by alternating the training between the RPN and

the classification “networks” till convergence, each apply-

ing their gradient to the shared convolutional layers.

verged several times before a stable model was produced

because the RPN did not generate valid bounding boxes.

3.3. YOLO

In contrast to Faster R-CNN, the YOLO network, intro-

duced by Redmon et al. [20], implements a truly unified

network architecture. The network produces multi-class

bounding box candidates directly from a single forward in-

ference on an image. See Figure 3 for a high-level compari-

son between Faster R-CNN and YOLO. The architecture of

YOLO is somewhat unusual as it takes a very large input

image (448×448 pixels) and produces 98 detection regions

from a grid of 7× 7 classification cells.

The YOLO network is trained to optimize a complex,

multi-part loss function. The mathematical definition of

the loss function is presented in [20]. In summary, it has



5 components: a regression-weighted sum-squared differ-

ence loss (SSD) for each cell’s bounding box center x and

y pixel, a regression-weighted SSD for the square-root of

each bounding box width and height, a conditional SSD

for the saliency probability of whether an object exists in

a bounding box, a classification-weighted conditional SSD

for the saliency probability of whether an object does not

exist in a bounding box, and a conditional SSD for the class

probabilities of each cell. To combat model instability, the

authors use the regression and classification weights in the

loss function to appropriately balance the error gradient and

utilize a learning rate schedule that starts intentionally low,

increases, then decreases again around iteration 600. While

these heuristics help, the network diverged several times

during our own training before a stable random initializa-

tion was chosen and the model converged. We let our net-

work train for 24,000 iterations.

The training of YOLO is done entirely as a unified net-

work. This is in contrast to [21] and [4], which require

additional machinery to train, are not completely unified,

or do not directly produce classified bounding boxes. The

benefit of this integration is most notably speed. The re-

sized training images are given to the network in batches

of 64 and the error gradient for each of the 98 network de-

tections is computed directly using the ground-truth bound-

ing boxes, which are mapped onto the range [0, 1]. During

test time, the entire image is given to the network, which

outputs a vector encoding of the 98 bounding box coordi-

nates, a saliency probability for each bounding box, and

class probabilities for each of the 49 (7 × 7) classification

cells. Each 64× 64-pixel classification cell contributes two

bounding box proposals. The bounding box saliency prob-

abilities are combined with the corresponding cell’s classi-

fication probabilities to create the final class probabilities

assigned to each bounding box. The class with the highest

probability becomes the bounding box label and detections

are generated by thresholding the low scoring probabilities.

3.4. Tradeoffs

The YOLO network has distinct advantages over Hough

Forests: 1) it has significantly more parameters to model the

training data, 2) has a larger approximate receptive field for

better regression performance, and 3) is inherently multi-

class. In comparison to Faster R-CNN, YOLO achieves

real-time performance and, as mentioned previously, sim-

plifies the entire detection pipeline down to a single forward

inference. However, YOLO is more difficult to train with

its poorly-behaving error gradient and has several network-

specific hyper-parameters. Like Faster R-CNN, the YOLO

network (realistically) requires a GPU to train, and both

take significantly longer to train over Hough Forests. Both

CNN networks were trained for about 24 hours using two

Titan X GPUs whereas the ensemble of 10 Hough Forests

Figure 4: The distribution of densities (bounding boxes per

image) in the dataset. A density of 0 indicates that the image

was taken containing no animals. The maximum density of

any image in the dataset is 23.

trees was trained in just under 3 hours on a quad-core CPU.

That being said, the testing speeds of both CNNs are at

least two orders of magnitude faster compared to our Hough

Forests implementation, which runs at roughly 15 seconds

per image across 9 scales.

On top of training speed advantages, our Hough Forests

implementation does not require nearly as much training

data. Furthermore, both CNNs initialize their convolutional

filters with pre-trained weights [18] before fine-tuning on

our dataset. Between the CNN-powered detectors, the

YOLO network was able to utilize empty images (images

with no ground-truth bounding boxes of any species) dur-

ing training whereas Faster R-CNN was not. This allowed

YOLO to see slightly more images during training, which

represents 1.7% of the dataset (Figure 4, density 0).

4. Experiments

Our experiments are designed to illustrate the overall

performance of the algorithms as applied to our dataset

and to provide a breakdown of errors into three categories:

species, viewpoint, and bounding box density. The bound-

ing box density represents the number of boxes within an

image, which is a surrogate for the amount of overlap (and

therefore occlusion) between animals. A more comprehen-

sive analysis of detection errors due to occlusion will be

presented in future work.

4.1. Dataset

Our dataset was constructed from 2,500 images taken by

ecologists, field technicians, computer vision researchers,

and volunteer citizen scientists [2, 25] working in Kenya.

Images were taken primarily of two sub-species of ze-

bras: plains zebras (zebra plains) and Grevy’s zebras

(zebra grevys). Bounding boxes and species labels



Viewpoint Plains Grevy’s Unspec. Total

left 1,965 565 120 2,650

front-left 226 116 29 371

front 83 69 32 184

front-right 104 137 17 258

right 424 1,029 147 1,600

back-right 168 326 36 530

back 190 244 36 470

back-left 381 186 25 592

Total 3,541 2,672 442 6,655

Table 1: The distribution of viewpoints in the dataset. The

unbalanced distribution of viewpoints is in part due to the

behavioral characteristic of the photographed species and in

part due to preferences of field scientists for mark-recapture

studies.

were then annotated by hand. In addition to zebras, bound-

ing boxes were generated for other animals present in the

images and assigned to the unspecified species tag. Fi-

nally, viewpoint information was annotated for each bound-

ing box by assigning it to one of 8 views of the animal’s

body: left, front-left, front, front-right,

right, back-right, back, and back-left. The en-

tire dataset has 6,655 ground-truthed bounding boxes with

3,541 plains, 2,672 Grevy’s and 442 unspecified labels. The

breakdown of viewpoints by species is shown in Table 1. A

challenge to photographing real-world zebras is that captur-

ing a balanced number of viewpoints can be difficult, with

front being the least photographed in our dataset. The

strong bias in plain zebras toward left side viewpoints and

Grevy’s zebras toward right side viewpoints is for histor-

ical reasons in the way animals were identified for mark-

recapture studies [19, 22].

The dataset was exported from our research software

IBEIS into the PASCAL VOC format. All images were re-

sized to a maximum linear dimension of 500 pixels while

maintaining aspect ratio. The data were split into subsets

including 60% training, 20% validation, and 20% testing.

For all training in this evaluation, the training and valida-

tion sets were combined and the trained models were eval-

uated against only the test set. The splittings of the sets,

while random, were balanced to respect both the distribu-

tion of species and the distribution of densities. For ex-

ample, approximately 80% of the images containing plains

zebras were used for training, but also approximately 80%

of images with only 1 ground-truth bounding box, and 80%

of images with 2 bounding boxes, and so on. A complete

breakdown of the bounding box densities can be seen in

Figure 4. For the densities that had fewer than 5 images,

an even split was used (when possible). Viewpoint was

not considered for this balancing procedure because many

of the images contain multiple photographed animals pho-

Figure 5: The localization-only precision and recall curves

plotted against a chosen operating parameter. The solid

lines represent precision and dashed represent recall. For

the CNN-powered detectors this operating parameter is

the bounding box confidence probabilities and for Hough

Forests it represents the (unbounded) weighting on the

Hough votes. As we can see, both CNN-powered detec-

tors have much better precision than Hough Forests. The

drop in Hough Forests precision above roughly 0.6 is due to

the bounding box regression scheme.

tographed from differing viewpoints. A total of 501 images

(with 1,343 ground-truth detections) comprise the test set.

4.2. Results

The three different detectors were evaluated by calculat-

ing the IOU (intersection over union) percentage between

the detections and the ground-truth. A detection was con-

sidered correct if 1) the bounding box IOU ≥ 0.7 and 2)

the species classification was correct. A classification er-

ror means the IOU threshold was met, but the classifica-

tion was incorrect. Otherwise, the detection was registered

as a localization error. Looking at Table 2, we can see

that Hough Forests makes by far the most classification and

location errors. The YOLO network achieves the highest

number of correct detections, but makes far more classi-

fication errors compared to Faster R-CNN. This is due to

the fact that Faster R-CNN makes more localization errors,

but almost never makes an incorrect classification. Hough

Forests makes the fewest classification errors, but this can

be deceiving since it has almost double the number of local-

ization errors as YOLO.

The precision and recall curves for each algorithm are

graphed together in Figure 5. Precision is graphed using

solid lines and recall with dashed. The x-axis represents the

varying of a chosen operating parameter for each algorithm.



Algorithm Correct Class Location

Hough Forests 540 2 801

Faster R-CNN 695 6 642

YOLO 752 175 416

Table 2: The correct and failed detections of each algorithm,

combined for both species. The YOLO network gets the

most detections correct, but has significantly more classifi-

cation errors than Faster R-CNN. Faster R-CNN, while it

makes more localization errors almost never guesses the in-

correct species. There are a total of 1,343 test ground-truth

detections (714 of plains, 536 of Grevy’s, and 93 unspeci-

fied).

For the CNNs, this operating parameter is the sigmoid de-

tection probability. For Hough Forests, this parameter is an

unbounded weight on the Hough votes, which was given an

artificial maximum for testing. The x-axis is the percentage

along which these parameters were varied.

The precisions of the CNNs (red, yellow, green, cyan)

dwarf the precisions of the Hough Forests detector (blue,

purple). The YOLO detector is able to perform slightly

better than Faster R-CNN, but this should not be a sur-

prise considering YOLO’s large input size. Faster R-CNN

does perform multiple crops of the image during test time,

but it does seem a little advantageous that YOLO gets a

higher-resolution input image (albeit tested once). The

precision curve for our Hough Forests implementation –

due to its Hough voting scheme – has non-intuitive, non-

monotonic behavior. As the voting weight is increased,

there exists a point (roughly 0.6) above which the detec-

tions become worse. This is because the algorithm begins

to over-estimate the bounding box coordinates and starts

to lose detections. The artificial maximum operating point

constrained on Hough Forests was chosen to illustrate this

trend. Eventually, its recall and precision both go to, or al-

most to, zero.

4.3. Errors

Since it is quantitatively our best detector, the break-

downs of errors by species, viewpoint, and density are cal-

culated from only the YOLO detections. For each test im-

age, we use the detections that correspond to the highest

precision. In this way, the best possible bounding boxes for

each image are used; we analyze the error of the detections

that failed either localization or classification. We make

these decisions because it allows for a transparent view of

the algorithm’s failure cases.

4.3.1 Species Error

Species errors mostly occur when unspecified species

are labeled as one of the two zebra species. We report (in de-

creasing order) the percentages of error within the instances

found in the test set: unspecified - 83/93 (89.3%),

zebra grevys - 227/536 (42.4%), zebra plains -

281/714 (39.4%). Note that these percentages are not

meant to sum to 100.0%, as they are the individual rates

of error within each subset.

4.3.2 Viewpoint Error

Front and back viewpoints cause the most errors. This

is most likely due to having fewer overall training ex-

amples and being less visually distinct. The full break-

down of errors by viewpoint: front - 26/37 (70.3%),

back - 65/97 (67.0%), front-right - 29/52 (55.8%),

back-right - 51/100 (51.0%), right - 154/319
(48.3%), back-left - 52/120 (43.3%), front-left

- 29/76 (38.2%), left - 185/542 (34.1%).

4.3.3 Density Error

Unsurprisingly, the presence of more animals in an image

leads to more errors, though not uniformly. This suggests

that occlusion is a major cause of errors. The error rates

for the different numbers of ground truth detections per im-

age are 7+ - 20/28 (71.4%), 6 - 7/16 (43.8%), 5 - 9/27
(33.3%), 4 - 10/50 (20.0%), 3 - 18/77 (23.4%), 2 - 6/123
(4.9%), 1 - 44/171 (25.7%), 0 - 0/9 (0.0%). Note that the

descending order of the failure rates do not align with the

descending densities (densities of 1, 2, and 3 are outliers).

This, again, is most likely due to having unbalanced train-

ing data – which these outliers comprise over 75% – and the

detectors being unable to handle occluded animals.

5. Conclusion

We have shown that the YOLO detector outperforms

both Faster R-CNN and Hough Forests on our dataset. The

YOLO detector achieves a detection mAP of 55.6% for

plains and 56.6% for Grevy’s. The most significant source

of error was density (i.e. occlusions). The detection of oc-

cluded and overlapping animals seems to be a challenging

case for modern detectors and is a prime subject for future

research. Finally, the density metric is not perfect for mea-

suring occlusion. Our ongoing evaluations will soon pro-

vide a more comprehensive analysis of the errors caused by

different forms and severity of occlusion.
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