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Abstract

This paper proposes a 5-component detection pipeline

for use in a computer vision-based animal recognition sys-

tem. The end result of our proposed pipeline is a collection

of novel annotations of interest (AoI) with species and view-

point labels. These AoIs, for example, could be fed as the

focused input data into an appearance-based animal iden-

tification system. The goal of our method is to increase the

reliability and automation of animal censusing studies and

to provide better ecological information to conservation-

ists. Our method is able to achieve a localization mAP of

81.67%, a species and viewpoint annotation classification

accuracy of 94.28% and 87.11%, respectively, and an AoI

accuracy of 72.75% across 6 animal species of interest. We

also introduce the Wildlife Image and Localization Dataset

(WILD), which contains 5,784 images and 12,007 labeled

annotations across 28 classification species and a variety

of challenging, real-world detection scenarios.

1. Introduction

Computer vision-based methods are being used increas-

ingly as tools to assist wild animal object recognition.

The ability to identify individual animals from images en-

ables population surveys through sight-resight statistics and

forms the basis for demographic studies. The pipeline of

processing for animal recognition includes several stages,

starting with the detection of animals in images and ending

with identification decisions. By making all stages of this

pipeline more reliable and automated, animal identification

studies can be increased in spatial and temporal resolution,

provide better conservation statistics, and – importantly –

allow citizens without specialized training to participate in

engaging census data collection events [1, 5, 23, 26].
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Figure 1. An overview of our detection pipeline: 1) image classi-

fication provides a score for the species that exist in the image, 2)

annotation localization places bounding boxes over the animals, 3)

annotation classification adds species and viewpoint labels to each

annotation, 4) annotation background segmentation computes a

species-specific foreground-background mask, and 5) AoI classi-

fication predicts the focus of the image.

The goal of this paper is to present a series of algo-

rithm components for the first stage of an animal recogni-

tion pipeline, namely detection. Detection includes the ob-

vious steps of finding animals in images, determining their

species, and placing bounding boxes around them, creat-

ing what we refer to as an annotation. But, the problem

is more complex than this, especially when large data vol-

umes gathered by non-specialists are considered: there may

be multiple (or no) animals from several different species



Figure 2. Example annotation localization predictions on single-sighting exemplar images for each of the 6 species of interest. The green

boxes designate ground-truth bounding box coordinates and the red boxes represent the annotation localization bounding box predictions.

Since we also perform annotation classification, we treat these bounding boxes more like salient object predictions.

in an image; some annotations may have poor quality while

others may show only parts of an animal due to self occlu-

sion, or occlusion by other animals or vegetation; and the

animals may be seen from a range of viewpoints and poses,

only some of which show identifiable information.

In response to these challenges we propose a five stage

detection process (Figure 1), each of which is a sepa-

rate deep convolutional neural network (DCNN): 1) whole-

image classification to select the images that indeed show

the species or species of interest, 2) bounding-box localiza-

tion to form the annotations, 3) annotation classification to

determine the species and viewpoint, 4) coarse annotation

segmentation to narrow the pixel-level focus of the identifi-

cation algorithm, and 5) a classifier to select in each image

what we define as “annotations of interest”, a novel concept

introduced here. An annotation of interest (or AoI) is the

primary subject(s) of a picture from the perspective of iden-

tification. For example, in Figure 1, one zebra is the clear

subject of the image, despite the presence of many other

zebras. Furthermore, if this zebra were not in the picture,

there would be no AoIs. This allows identification to work

with far fewer annotations, especially when animals can not

be reliably photographed in isolation, and focuses the com-

putations on the intended subject(s)s of each image.

Along with our proposed detection pipeline, we also

present a new detection dataset called WILD (Wildlife Im-

ages and Localizations Dataset). The purpose of WILD is

to provide a more realistic set of real-world animal sight-

ings, with scenarios not commonly in public datasets. The

species that are catalogued in WILD are 1) Masai giraffe

(Giraffa camelopardalis tippelskirchi), 2) reticulated gi-

raffe (Giraffa reticulata), 3) sea turtle (Chelonia mydas and

Eretmochelys imbricata), 4) humpback whale fluke (above-

water flukes of Megaptera novaeangliae), 5) Grevy’s zebra

(Equus grevyi), and 6) plains zebra (Equus quagga).

The rest of the paper is organized as follows. Section 2

outlines related work on animal censusing, object detec-

tion, and identification algorithms. Section 3 describes each

components in the detection pipeline. Section 4 the de-

scribes WILD dataset and presents the results of the detec-

tion pipeline running on that dataset. Section 5 concludes

with a brief discussion and suggestions for future work. Due

to space limitations and to focus on the main concepts, we

mostly provide summaries of the primary DCNN architec-

ture, saving details for the more novel components.

2. Related Work

The components of the detector pipeline are modeled on

a variety of deep learning architectures. The whole-image

and annotation classifiers are most related to the Overfeat

DCNN by Sermanet et al. [25]. The localization network is

modeled off of the You Only Look Once (YOLO, version

1) detector by Redmon et al. [21] whereas the background

segmentation network is a patch-based variant of the FCNN

(Fully Convolutional Neural Network) discussed by Long

et al. in [18]. The AoI classifier concept is novel, but its

DCNN architecture has structural similarities to [25] and

shares inspiration to objectives in deep saliency object de-

tection [4, 14, 17] and attention networks [10, 27].

Our pipeline is designed to be used as a black-box

component within a larger individual animal identification

pipeline. Various frameworks [2, 9, 20] in the conservation

literature have included computer vision components.

3. Methods

In this section we will describe the various components

of our pipeline. All models (except for the annotation lo-

calizer) are trained using Lasagne [7] and Theano [3] on a

single NVIDIA TITAN X GPU with 12GB. The annotation

localizer is trained using a Python wrapper around the orig-

inal open-source implementation1 by Redmon et al.

3.1. Image Classification

The purpose of the image classifier is to predict the

existence of species of interest within an image. Unlike

the original ILSVRC classification challenge that offered

only a dominant whole-image class with 1-class and 5-class

testing modes, we often need to classify images contain-

ing multiple animal sightings of possibly more than one

species. Therefore, we structure the classifier to predict a

multi-label, multi-class vector where the corresponding in-

dex for a species is set to 1 if at least one animal of that

species exists in the image and 0 otherwise. The network

1https://github.com/pjreddie/darknet



Figure 3. An illustration of the background segmentation patch

sampling (using giraffes) and the utility of a cleaning procedure.

The target giraffe (green, solid) has a collection of labeled positive

patches (blue and red) and negative patches (orange) that are sam-

pled outside the bounding box. The blue patches are true positives

whereas the red patches are incorrectly-labeled true negatives. The

goal of the cleaning procedure is to automatically convert all red

boxes into orange boxes. Best viewed in color.

takes as input a 192 × 192 pixel image that is reduced to

a 5 × 5 × 128 feature vector via convolutional and max

pooling layers. The network then adds a 256-unit dense

layer, followed by a feature pooling layer, a dropout [11]

layer (p = 0.5), and another 256-unit dense layer. The final

dense layer has 6 output values, one for each of the species

of interest, which are activated by a sigmoid function. The

model’s weights are optimized using a binary cross-entropy

loss, applied independently for each output class.

The image classifier can be thought of as a fast, high-pass

content filter to prevent irrelevant images from being pro-

cessed further along the pipeline. One example of where is

useful is in processing raw images taken by a camera trap. It

can be common for images collected by a motion-triggered

camera trap to have a high ratio of false positive images,

which do not contain any sightings of a species of interest.

These images are irrelevant to identification and should be

filtered out as distractions to reduce overall processing time.

3.2. Annotation Localization

The annotation localization network design is based on

the You Only Look Once (YOLO, version 1) network by

Redmon et al. [19, 21]. The YOLO architecture is a variant

of single-shot detectors (e.g. SSD[17]), which directly out-

puts a fixed-length regression output for a given fixed-sized

input image with no need for a separate region proposal net-

work (RPN). Refer to [21] for in-depth implementation de-

tails. The network’s goal is to perform bounding box regres-

sion and species classification around all objects of interest,

the result being a collection of image sub-regions that can

be cropped into a candidate list of object annotations. The

YOLO network takes 448 pixel by 448 pixel images as input

and predicts a 7 by 7 classification grid with 2 anchor boxes

per cell. The output of the network is therefore 98 bounding

box coordinates along with an object score for each of the 6

species classes on each bounding box.

The predicted bounding boxes by the annotation local-

ization network have associated species label classifica-

tions. Since we are performing annotation classification

anyway, we essentially treat these localizations as salient

object detections. Instead, we opt to use the output of

the annotation classification network as the final annotation

species, as detailed below in Section 3.3. The motivation for

using an annotation localizer is clear: we want processing

on relevant input sub-regions, which eliminates distracting

pixel information and reduces identification computation.

Examples of exemplar object localizations for each of the 6

species can be viewed in Figure 2.

3.3. Annotation Classification

The annotation classification network architecture is

very similar to the image classification component except

that it performs a standard single-label, multi-class classi-

fication. We intentionally train a separate set of weights

for the convolutional feature extractors in each component.

This obviously increases redundancy but allows for special-

ized filters for each task. By keeping each task semantically

compartmentalized, we also achieve the advantage of be-

ing able to optimize each component independently with-

out needing to validate the performance impact of a uni-

fied feature extraction across the entire pipeline. The goal

for the annotation classification network is to provide cor-

rected species and additional viewpoint classifications. The

network takes as input smaller, 128 pixel by 128 pixel sub-

regions that represent the resampled annotation proposals.

Input images are reduced to a 5 × 5 × 256 feature vector

for classification via convolutional, max pooling, and batch

normalization [12] (BN) layers. The network then adds a

512-unit dense layer, followed by a feature pooling layer, a

Dropout layer (p = 0.5), and another 512-unit dense classi-

fication layer. We combine the species and viewpoints into

paired classification combinations for the last dense layer

of the network (activated by softmax). The model’s weights

are optimized using a categorical cross-entropy loss.

Alongside the species labels, we also classify the an-

notations based on the viewpoint of the animal, rela-

tive to the camera. The viewpoints for zebras and gi-

raffes are labeled with one of 8 discretized yaw locations

around the animal, from the set {front, front-right,

right, back-right, back, back-left, left,

front-left}. Sea turtles are commonly captured from

above and sometimes from below, so we constrain their



allowed viewpoints to the set of 6 viewpoints {front,

right, back, left, top, bottom}. Whale flukes also

have a similar restriction where they are label from a set

of 4 {top, bottom, right, left}, with the most com-

mon being bottom when the angled fluke is viewed above

water and typically looking towards the rear of the animal.

The species and viewpoints pairs are combined into 42 dis-

tinct combinations to create the set of available classifica-

tion labels for training. The label pairing used by the an-

notation classifier does cause an inherent class imbalance,

but achieving balanced viewpoints across all species in a

real-world, unstructured setting is an impractical task.

The primary task of annotation classification is to cor-

rectly label the annotation’s species and the correct view-

point together. Poor scoring bounding boxes do not con-

tinue in the pipeline. The fallback task of this network is to

perform species classification; therefore, any incorrect pre-

dictions by the annotation classifier are preferred to happen

within the same species (i.e. incorrect viewpoint classifica-

tion, but correct species classification).

3.4. Annotation Background Segmentation

The annotation background segmentation neural net-

works are a distinct type of architecture called a Fully

Convolutional Neural Network (FCNN). Our usage of the

FCNN architecture is unique from deep learning segmen-

tation architectures (like [18, 22]) in that we do not re-

quire fully-segmented ground-truth for training. Instead, we

structure background segmentation as a binary classifica-

tion problem where species-specific body patches are clas-

sified against background negative patches. The goal of this

detection component is to produce a species-specific back-

ground mask, which can be used to eliminate or otherwise

down-weight distracting non-animal pixel information. As

such, we can train the networks on patches of 48×48 pixels

but, during forward inference, the networks transparently

scale up and adapt to arbitrarily-sized inputs for computing

binary classification maps. A key insight to the architecture

is that during training the input images are reduced via con-

volutional and max pooling layers to a 1 pixel by 1 pixel

patch with 128 channels. During inference, the network’s

output is expected to increase to W × H × 128, where W
and H are down-sampled resolutions of the original input

size. We then use Dropout (p = 0.4) and a single soft-

max Network-in-Network [15] layer to engineer the correct

number of classification outputs while retaining a fully con-

volutional structure. Importantly, the last layer’s softmax

activation is applied along the channel dimension, across

spatial dimensions.

To create the training patch data, a target annotation is

selected and its corresponding image is resampled such that

the annotation has a width of 300 pixels. Then, random

patch locations and scales (within ±80%) are sampled uni-

Figure 4. Example input to the AoI classifier. The positive AoI

training example (top row) is comprised of the resampled RGB

image (left) and the annotation segmentation mask (middle). The

right-most column depicts their combined representation. As

shown in the negative example (bottom row), the masked anno-

tation is of an occluded, background animal and is not an AoI.

formly across the image with positive patches being cen-

tered inside the annotation (or an annotation of the same

species) and negative patches centered outside all annota-

tions for that species. Positive patch exemplars are thus

species-specific and are meant to cover sub-regions within

an animal body whereas negative patches are meant to be

a representative sampling of background foliage, terrain,

other animals of a different species, etc.

Our proposed positive patch sampling scheme can be

problematic, however. The bounding box localizations of

giraffes, for example, generally have large amounts of neg-

ative space around the neck and around the legs (Figure 3).

When positive patches are sampled from within giraffe

bounding boxes, a certain number of patches are incorrectly

labeled as positive where they actually contain only neg-

ative, background pixel information. To help correct for

this dataset label noise, we employ the use of an automated

cleaning procedure during training. At the start of training,

the network is given the original labels and asked to perform

unaltered binary classification. When the learning rate is

decreased (and only after the model achieves an overall ac-

curacy ≥ 90%), we run the currently learned model on the

training and validation data to find potentially incorrect la-

bels. Any label that has a ≥ 95% prediction of belonging to

the opposite ground-truth label is automatically “cleaned”

and its binary label flipped. We have found that the clean-

ing procedure helps training smoothness and improves the

qualitative performance of the results.

3.5. Annotation of Interest (AoI) Classification

The novel task for the AoI classification network to solve

is to predict an a posteriori decision concerning the com-

position of an image: “why did the photographer take this

picture?” This is not a question of artistic composition. It

is instead motivated by the goal of processing only the most



identifiable animals in a given image. Therefore, to answer

the question of “why”, the first task is to understand an im-

age’s semantic composition with relation to all captured ani-

mals in the scene. We construct the ground-truth AoI labels

by marking the individual annotation(s) that are the inter-

est, subject, or focus of each image. More concretely, an

AoI should have most or all of the following properties:

• is of a distinguishable individual animal (i.e. free-

standing, well-lit, clearly visible, etc.),

• is relatively large and has decent resolution,

• is commonly located near the center of the image, and

• is in focus and not blurred

Conversely, an annotation should not considered an AoI if

it has one or more of the following opposite properties:

• is a part of an overlapping herd or group of animals

• is relatively small and/or contains few pixels

• is out of focus or is otherwise blurry

• is located around the edges of the image

• is occluded by other animals or objects by area ≥ 25%

• is off the edge of the frame of the image by area ≥ 25%

These properties demand that the annotation not be re-

viewed in isolation (i.e. by only viewing its cropped sub-

region); the decision that an annotation is an AoI must

be made by weighing the entire context of the image and

against any other annotations it coexists with. Further, be-

cause these conditions are fairly strict, there are rarely more

than one or two AoIs in a particular image, and many im-

ages have no AoIs. The overarching motivation for AoI

classification is to prioritize further processing on only the

most identifiable annotations. While the concept of identi-

fiability is algorithm-dependent, we structure AoI as a gen-

eralized, easy-to-determine proxy.

The AoI classifier has a very similar convolutional and

dense layer structure to the image classifier, except for three

differences: 1) it takes as input a 4-channel input image,

comprised of a red, blue, and green color channels stacked

with a fourth annotation bounding box mask, 2) the output

layer (with a softmax activation function) has only two out-

puts for simple binary classification, and 3.) the network

weights are optimized using categorical cross-entropy loss.

Examples of a positive and a negative training input images

can be viewed in Figure 4. The end result of the AoI clas-

sifier is eliminating the need to perform identification pro-

cessing on background and partially-visible animals, which

cause identification confusion and drastically increases the

need for a human-in-the-loop reviewer.

4. Results

This section describes the WILD data and presents ex-

perimental results for the detection pipeline. All software

to train the various algorithms, perform inference on new

imagery, and evaluation on WILD is open-source.2

2wildme.org

Species Images Annots. AoIs

Masai Giraffe 1,000 1,468 611

Reticulated Giraffe 1,000 1,301 595

Sea Turtle 1,000 1,002 567

Whale Fluke 1,000 1,006 595

Grevy’s Zebra 1,000 2,173 669

Plains Zebra 1,000 2,921 561

TOTAL 5,784 9,871 3,598

Table 1. WILD: a breakdown of the number of images, annota-

tions, and AoIs per species. The total number of images is less than

6,000 because some species share sightings within the same im-

age, specifically between zebras and giraffes, which demonstrates

the need for a multi-labeled image classifier. There are also an

additional 2,136 annotations in this dataset of miscellaneous cate-

gories (car, boat, bird, etc.) that are ignored in this paper.

4.1. WILD

We created a new ground-truthed dataset for the tasks

presented in this paper, called WILD; WILD is comprised

of photographs taken by biologists, wildlife rangers, citi-

zen scientists [13], and conservationists, and captures de-

tection scenarios that are uncommon in publicly-available

computer vision datasets like PASCAL [8], ILSVRC [24],

and COCO [16]. These datasets make little distinction be-

tween living animal sightings vs. abstract representations of

an animal (e.g. a stuffed zebra animal toy, fondant zebras on

birthday cakes). These abstractions distract from our task of

detecting real-world sightings of animals in the wild and are

inappropriate for the follow-on task of individual identifica-

tion. In WILD all of the images in the dataset were taken

in situ by on-the-ground photographers. Another example

is that zebras and giraffes tend to form groups and stand

closely together, creating sightings with frequent bounding

box overlap, occlusion, and cross-species co-location. Fi-

nally, WILD contains closely relative species of giraffes and

of zebras that must be distinguished.

We gathered a dataset of 5,784 images and hand-

annotated 12,007 bounding box localizations across 28

classes. The 6 species of interest that are the focus of this

paper represent 9,871 annotations in the dataset. A break-

down of the number of images and annotations that con-

tain each species can be viewed in Table 1. We assigned

cropped annotation sub-regions to human reviewers for la-

beling the species and dominant viewpoint of the animal.

We then tasked reviewers to pick the annotation(s) in each

image for AoI classification, the guidelines for which can

be reviewed in Section 3.5. In summary, a total of 3,602 an-

notations were marked as AoIs. The dataset was then par-

titioned into two sets: training (4,623 images) and testing

(1,161 images) through an 80/20% stratified split based on

the number of annotations in each image. This results in a

total of 7,841 annotations for training and 2,030 for testing.



Figure 5. Performance curves. The image classifier ROC curve (a) achieves a minimum area-under-the-curve (AUC) of 96.33%. The

annotation localizer precision-recall curves (b) reports an unfiltered mean average-precision (mAP) of 81.67% across all 6 species with

an Intersection-over-Union (IoU) threshold of 50%. The drastic drop in performance of the plains zebra species can be contributed to the

high number of background – likely small-sized – annotations for this species; focusing (b) on just AoIs (c) increases mAP to 90.62%.

The annotation classifier ROC curve (d) achieves an AUC of 98.09% for all species, which are independently averaged across all of their

associated viewpoints. The point that is plotted on each of the curves indicate the operating point which is closest to a perfect prediction.

We distribute3 the dataset in the ubiquitous PASCAL VOC

format, with additional metadata attributes to mark view-

points and AoI flags. All results are reported on held-out

validation data on the WILD dataset.

4.2. Image Classification

The image classifier does a good job at correctly predict-

ing species existence within an image, as shown in Figure

5 (a). The worst-performing species (Masai giraffe) still

achieves a ROC area-under-the-curve (AUC) of 96.33% and

the best-performing species (whale fluke) has an almost-

perfect 99.94% AUC. The mean AUC across all species is

98.27%. With appropriate operating points selected inde-

pendently for each species (indicated by the colored dots on

each curve), the overall image classifier accuracy is 64.77%.

When the image classifier is applied to the test data, there

are no images that result are incorrectly suppressed.

4.3. Annotation Localization

The annotation localization model has a spread of accu-

racies across the different species, mostly based on that spe-

cific species’s level of sighting difficulty. For example, the

whale fluke and sea turtle localizations achieve 99.01% and

93.52% average-precision (AP), respectively. This makes

intuitive sense: a mostly rigid body part sighted against a

stark background of the sea, ocean floor, or sky will be eas-

ier to localize compared to a compact herd of overlapping,

occluded, and varying animals. As displayed in Figure 5

(b), this difference in difficulty can be seen noticeably in

the relatively poor performance of the plains zebra localiza-

tions at only 57.54%. By referencing Table 1 we can see

that the ratio of AoIs to annotations is lower at 19.21% for

3 http://lev.cs.rpi.edu/public/datasets/wild.tar.gz (1.4GB)

plains zebras compared to the average of 42.18%. Further-

more, the ratio of annotations per image is also the highest

at 2.921, compared to the average of 1.645. Nevertheless,

the localizer achieves a mAP of 81.67% across all species.

We further analyze the performance of the localizer

when only annotations marked as AoIs are considered, in

Figure 5 (c). As detailed in Section 3.5, AoIs should be

clearly distinguishable, relatively large, and free of major

occlusions. As shown in [19], these are the major causes

of error for animal localization. The annotation localization

performance improves to 90.62% mAP and improves recall

on all species, with the most marked improvement being the

plains zebra localizations. This indicates that most of the lo-

calization errors are from background, small, occluded, or

otherwise unidentifiable animals.

4.4. Annotation Classification

The annotation classifier has two goals: 1) species clas-

sification only and 2) species and viewpoint combined clas-

sification. While the network is optimized to learn the

combined classifications, it can be used to predict accurate

species-only labels for annotations. As seen in Figure 5 (d),

the species-specific ROC curves achieve at least 96.71%
AUC across all species. The species ROC operating curves

in this figure are calculated by taking an average over the

associated ROC curves for its respective viewpoints.

The effect of these two annotation classification goals

can be visualized in Figure 6. The white squares indi-

cate species and the inter-species classification accuracy is

94.28%; therefore, any values outside of the squares are in-

correct species classifications. We can see that the majority

of the inter-species classification error (only 5.72%) is be-

tween the two sub-genus species of giraffes and some addi-

tional error between the two zebra classes. This makes in-



Figure 6. The classification confusion matrix for the annotation

classifier, marked with abbreviated {species:viewpoint}.

The white boxes represent the separate species classes.

tuitive sense as the species look fairly similar and can have

subtle differences between their appearances. It is worth

noting here that the whale fluke and sea turtle species have

almost no inter-species confusion, which is supported by

their ROC AUC values of 99.78% and 98.28%, respectively.

Out of the species errors that are made, 62.93% are due

to incorrect sub-genus giraffe and zebra classifications. In

summary, the overall genus (zebras vs. giraffes vs. whale

flukes vs. sea turtles) classification accuracy is 96.40%.

The overall accuracy of species and viewpoint combi-

nation classifications is 61.71% over 42 distinct categories.

The accuracy improves from this baseline when we take into

account how viewpoint variance impacts identification (i.e.

a ±45% degree shift in yaw is acceptable for giraffes and

plains), which achieves a “fuzzy” accuracy of 87.11%.

4.5. Annotation Background Segmentation

Since the annotation background network was trained

on noisy, patch-based data – and with the lack of fully-

segmented species ground-truth in WILD – we cannot pro-

vide a true qualitative segmentation metric for the model’s

performance. However, looking at Figure 8, the background

segmentation network performs well on various annotations

of a known species to classify regions of the image as back-

ground and foreground. In this figure, the binary output

masks of the background classification network are com-

bined with their associated input annotations. Something to

note is the lack of distinction between class instances (i.e.

same-class animals in the annotation will not be masked

out). Some of our previous work in [6] shows that over-

Figure 7. The AoI classifier ROC curves. The best AoI classifica-

tions were achieved by the plains zebra species, mostly due to the

lower AoI to annotations ratio.

all identification matching accuracy improves when a back-

ground mask is used for feature weighting.

4.6. Annotation of Interest (AoI) Classification

Finally, the AoI classifier achieves an overall accuracy

of 72.75% on the held-out test data (521 true positives,

1,268 true negatives, 506 false positives, 164 false nega-

tives) when using a confidence threshold of 84%. Figure 7

shows ROC curves for each species. Ironically, the perfor-

mance of plains zebras shines under this classification task;

this further supports the claim that the background annota-

tions for plains zebras in WILD are not good identification

exemplars. The AoI classification is objectively the worst-

performing component of the detection pipeline as it strug-

gles with the ambiguity of the overall concept. The primary

goal, however, of AoI selection is to reduce the overall num-

ber of poor annotations that are passed along to an identifi-

cation pipeline. From this point-of-view, the AoI classifier

correctly eliminates over half of the data required for pro-

cessing at the cost of only 164 missed positive AoIs.

5. Conclusion

In this paper we evaluated five detection components

against WILD, a new dataset of real-world animal sight-

ings that focuses on challenging detection scenarios. Future

work can be focused on improvements to WILD, improving

the accuracy of annotation of interest (AoI) classification,

and performing a comprehensive identification performance

study. We also intend to formally evaluate the automated

cleaning procedure in a future publication.



Figure 8. Annotation background segmentation results.
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