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Abstract

This paper addresses the problem of identifying individ-

ual animals in images based on extracting and matching

contours, focusing in particular on the trailing edges of

humpback whale flukes and the outline of the ears of African

savanna elephants. A coarse-grained FCNN is learned to

isolate the contour in an image, and a fine-grained FCNN

is learned to provide more precise boundary information.

The latter is trained by generating synthetic boundaries

from coarse, easily-extracted training data, avoiding te-

dious manual effort. An A* algorithm extracts the final

contour, which is converted to set of digital curvature de-

scriptors and matched against a database of descriptors

using local-naive Bayes nearest neighbors. We show that

using the learned fine-grained FCNN produces more accu-

rate contours than using image gradients for fine localiza-

tion, especially for elephant ears where the boundaries are

primarily texture. Matching using contours extracted using

the fine-grained FCNN improves top-1 accuracy from 80%

to 85% for flukes and 78% to 84% for ears.

1. Introduction

We address the problem of identifying individual ani-

mals from images based on extracting and matching dis-

tinguishing contours (Fig. 1). In particular, we focus on the

trailing edge of a humpback whale fluke and the outer edge

of the ear of an African savanna elephant. The technical fo-

cus of the paper is learning to extract these contours with

sufficient reliability and accuracy to enable identification.

“Photo-identification” of animals using patterns of

stripes, spots or texture, appearance of faces, and body out-

lines [9, 15, 32, 16, 2, 34] is gaining traction as a potential

replacement for capture-mark-recapture techniques, which

are expensive, labor intensive, and often dangerous [17].

Given the proliferation of inexpensive, high-quality digital

cameras, if photo-id can be made sufficiently automated and

accurate, it will enable gathering of animal identity data at

high resolution in time and space, revolutionizing popula-

tion biology and conservation studies.

For a variety of reasons photo-id is still a challenging

problem. Animals in their natural habitats are uncoopera-

tive photo subjects.The image appearance of distinguishing

information changes significantly between sightings due to

short-term variations in body position, illumination and oc-

clusion, and due to longer term changes in skin condition,

scarring, animal maturation, and aging. This problem is ex-

acerbated by the relative sparsity of curated training data,

with many individuals in a population appearing in only one

or a small number of images. In this paper we introduce

and evaluate a deep-learning based algorithm to extract a

single identifying contour — which may be trained without

repeated sightings of individual animals — and then com-

pute features from this contour for matching.

Our contour extraction problem requires more than ap-

plication of traditional methods based on intensity gradi-

ents [11]. There are two reasons for this. First, the presence

of strong distracting gradients that arise from a variety of

potential sources, including trees, waves, the horizon, self-

occlusion, scars, and skin pigmentation, makes it difficult

to isolate the desired contour. Second, the contour may

be visually subtle, appearing as a slight change in texture
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Figure 1. Example matching of humpback flukes (top) and ele-

phant ears (bottom). In each case fine-detail contours are extracted

using the learned contour model introduced here. Of particular

note, the distinguishing notches on the elephant ear appear only as

subtle changes in texture. Curvature descriptors are extracted from

contour regions and matched using the local naive Bayes nearest

neighbor algorithm. Lines and colors (especially red) between im-

ages indicate the strongest matching contour segments.

without significant color or intensity gradients. We address

these two problems by learning both a coarse and fine con-

tour appearance model: the coarse model is used to suppress

distracting information from other contours, while the fine

model is used to capture the fine markings that distinguish

contours from distinct individuals.

This raises the challenge of extracting training data to

drive the learning. We would like to do this without re-

quiring pixel-by-pixel labeling of contour boundaries, an

expensive effort akin to the training data needed for seman-

tic segmentation. This is made especially challenging by

the subtlety of the actual contours. Requiring such an effort

for each new species would limit the practical utility of our

algorithms. Instead we propose a self-supervised method

for training the contour appearance model based only on

coarsely (and easily) traced contour outlines. While our

method can exploit dense, high-resolution training data, if

available, we are able to show accurate contour extraction

and state of the art matching results without it.

The contributions of this paper include:

1. An algorithm for extracting identifying contours based

on a learned appearance model that only requires coarse

training information.

2. The integration of the results of this algorithm with a

matching algorithm based on curvature descriptors and

local Naive Bayes nearest neighbor matching.

3. A demonstration of the accuracy of the contour extraction

algorithm by comparison with sparsely-extracted ground

truth data.

4. Improved recognition for humpback whales and state of

the art recognition for African savanna elephants

Two final introductory notes are important. First, we as-

sume a detection algorithm has been trained to locate hump-

back flukes and elephant ears, placing a bounding box

around each [26]. Images cropped to these bounding boxes

form the starting point for our work. Second, our complete

photo-id algorithm produces a rank-ordered list of the best

matching animals from a database of previously-labeled an-

imals. Human users are responsible for final identity de-

cisions. Fully-automatic identification, while important, is

beyond the scope of this work.

2. Background

A significant amount of work addresses the problem

of automating the photo identification component of an

ecological field survey by exploiting identifying markings.

These markings include stripe patterns for zebras [8, 9] and

toads [25], and the ratio of body part lengths [21] for dol-

phins. Other methods, including our work, exploit contour

markings [2, 32, 15, 16, 34] for identification.

Methods such as DARWIN [31, 32] and Finscan [15]

combine edge detection [6] with the active contours algo-

rithm [19] to extract the identifying contour from an image

of a dorsal fin. Because contours may be drawn to strong

image gradients caused by waves or illumination, points

must be repositioned manually. Additionally, the smooth-

ness term used by the active contours algorithm [19] dis-

courages rapid changes of direction in the extracted con-

tour. This conflicts with the goal of accurately representing

the jagged nicks and notches that contain identifying infor-

mation.

A method for extracting dorsal fin contours of sharks is

introduced in [16]. A contour map representing likely con-

tour regions is aggregated using [3], before a random forest

classifier [5] identifies contour sections belonging to fins.

This classifier uses normal and local appearance informa-

tion [33] from a hand-labeled training set.

In [34], an FCNN trained with pixel-level labels predicts

the probability that each pixel in an image is part of the con-

tour. These probabilities are combined with the image gra-

dient to define a cost matrix. Finally, the contour extraction
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is formulated as a shortest path problem, where the short-

est path search is initialized by a neural network trained to

predict the start and end points of the contour [18].

In the context of general contour extraction, a contour

is defined by a continuous sequence of strong local gradi-

ent responses [6], often refined using active contours tech-

niques [19]. To distinguish strong gradient responses from

the contour from those of the background, segmentation

methods use supervised learning to assign labels to pix-

els. The level of supervision may vary. For example,

in [13, 4, 30], the user labels a region as foreground or back-

ground after which the optimal segmentation is computed

by minimizing an energy term [12]. This idea is extended

by learning the foreground appearance across multiple im-

ages from the same class in [1]. It is important to note that

methods that rely on global shape are unsuitable for contour

extraction in the context of instance recognition, because

distinguishing between members of the same population re-

quires an accurate representation of subtle local variations.

3. Learned Contour Extraction

The contour algorithm has three major components. The

first two are fully-convolutional neural networks [22] (FC-

NNs) that each produces a pixel-level probability map. The

third is a shortest path contour extraction algorithm that is

guided by these maps, similar to [34]. The first FCNN pro-

vides coarse grained information about the location of the

identifying contour. It is trained by asking annotators to

trace a thick brush stroke to cover the contour in each train-

ing image, an easily accomplished task. The thickness of

the contours learned by the first FCNN prevents us from

using them to identify individuals, and therefore the second

FCNN provides more precise information about the location

of the contour. While training of this fine-grained FCNN

(FG-FCNN) could use precisely-annotations of precisely-

located boundaries, we show how to train it to accurately

locate the boundary from the coarse-grained training data

alone. In effect, it learns to recognize the contour boundary

without actually having seen a real one.

3.1. Training Data Annotation

Annotators are shown cropped images that frame the

body part containing the distinguishing contour — the ear

or the fluke. They are asked to trace the entire identifying

contour using a single brush stroke, trying to keep the cen-

ter of the brush close to the true contour as they proceed,

but being certain that the contour is covered by the brush

stroke. This attempts to balance accuracy against human

effort, typically requiring a few minutes for each contour.

For a brush with a radius r, this produces a set of points

known to be no more than 2r from the identifying contour,

while ensuring that no point outside this set lies on the true

Figure 2. The interface for collecting training data for the coarse

appearance model (left) and a close-up view (right).

Figure 3. The interface for collecting fine-grained contour points

(left) and a close-up view (right). These points are required exclu-

sively for experimental evaluation and are not used in training.

contour. The interface used to collect this coarse grained

training data is shown in Figure 2.

On a subset of images we collect a sparse set of fine-

grained contour points. It must be stressed that points are

purely for experimental evaluation and are never used for

training. Annotators are shown the image with a regularly

spaced grid dividing the image into cells. They are asked to

find each grid cell that intersects the contour and click the

contour point within the cell that is closest to its center. This

spreads the samples evenly and avoids bias in the selection

of points – e.g. toward notches. This annotation process

takes upwards of five to ten times as long as the coarse trac-

ing. The primary reason for this is the existence of regions

where the contour is extremely subtle, therefore requiring

meticulous effort from the user to separate the contour from

the background. The interface used to collect this set of

fine-grained contour points is shown in Figure 3.

3.2. Learning the CoarseGrained Probabilities

The coarse-grained FCNN (CG-FCNN) is trained to pre-

dict for each pixel in an image I (of an ear or fluke) the prob-

ability that it would be covered by the coarse brush stroke,

producing a probability image, C, at the same resolution as

I . We employ a U-Net architecture [29] and train the net-

work from random initialization using binary cross-entropy

loss. Random rotations are applied to training images and

their coarse contours to augment the training data.
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Figure 4. Example generation of synthetic boundaries at a control

point for two different ears (left and right). The top shows the

initial regions, centered on the control point, and oriented along

the normal (red line segment) direction. The middle shows these

regions rotated with the normal now horizontal. The blue and red

shaded regions, formed from outside the exclusion region between

the blue and red lines, are combined along the randomly generated

polynomial to form the synthetic boundaries shown at the bottom

(zoomed into higher resolution than the middle and top).

3.3. SelfSupervised Learning of the FineGrained
Probabilities

Supervised training data for the fine-grained FCNN (FG-

FCNN) is generated by synthesizing fine-resolution bound-

ary patches from the coarse training data. As illustrated in

Fig. 4, at points along the coarse contour, we can step out-

side the contour’s brush region along the perpendicular di-

rection and extract a pair of image regions that we know

with high confidence (a) do not intersect the coarse contour

and (b) are on opposite sides of the boundary. The synthetic

patch is created by overlapping these regions and blending

them along a randomly-generated curve. These synthetic

boundary patches are used to train the FG-FCNN to predict

the probability that a pixel is a boundary pixel.

The first important detail is selecting the “control points”

along the coarse contour. These approximate the center of

the coarse contour represented by the probability map C.

During training, we obtain C from the annotated brush re-

gion, with pixels covered by the brush assigned a value of 1

and all others assigned 0. During inference C is the proba-

bility map produced by the CG-FCNN. Given C, we com-

pute a distance transform D such that entry dij in D is the

distance from pixel location (i, j) to the closest zero-valued

probability pixel in C — pixels confidently labeled as not

on the identifying contour. Points on the ridgeline of D be-

come the control points while the direction perpendicular to

this ridgeline becomes the normal along which patches are

sampled. Examples of these control points are shown as the

centers of the oriented rectangles at the top of Fig. 4.

For a particular control point p, we sample a pair of

patches opposite each other along the normal at p, exclud-

ing the non-zero region of D. This non-zero region is be-

tween the blue and red lines in Fig. 4 (center), and the

patches are to the left (blue) and right (red) of these lines.

The two patches in the pair are then overlapped to form a

single rectangular region with a synthetic contour boundary

forming the transition between the two combined regions

(shaded blue and red regions in the center panels of Fig. 4).

The synthetic contour boundary is a linear combination of

the first 10 Bernstein polynomial basis functions [23] scaled

and stretched to the dimension of the blending region. We

randomly sample the coefficients of the basis functions to

create a variety of boundary shapes. The y-axis of the gen-

erated polynomial is along the normal direction at the con-

tour point and defines the location of the synthetic contour

boundary. The alpha-blended transition between the two

patches is approximately 4 pixels wide (2 pixels on either

side of the contour) to create realistic boundaries.

The FG-FCNN uses the same U-Net architecture [29] as

the CG-FCNN, with the pixels in the transition region of

the synthetic contour boundary patches playing the role of

the brush-stroke pixels in the CG-FCNN. For elephant ears,

we use patches of dimensions 256 × 256 to train the FG-

FCNN, while for humpback flukes — that tend to be more

rectangular — we use 384×192. We train the FG-FCNN to

minimize the cross-entropy loss and L2 penalty with a co-

efficient of 10−4 by using stochastic gradient descent with

a momentum value of 0.9. We have found that initializing

the FG-FCNN from the weights of the CG-FCNN and then

tuning with a very low learning rate (10−5 vs. 10−2) is nec-

essary to obtain good results. Intuitively, the CG-FCNN has

already learned the appearance of the region surrounding

the contour boundary, but not the contour itself. By initial-

izing the FG-FCNN to the same weights and fine-tuning,

we simply train it to suppress those pixels that come from

the surrounding region, rather than the contour itself.

When using the FG-FCNN during inference, we crop a

patch centered at each control point. The probability map

predicted by the FG-FCNN for each patch is used to fill

in the corresponding entries in the fine-grained cost matrix.

Overlap between probability maps from different control

points is handled by interpolation, with Gaussian weighting

based on the distance of pixels from control points.
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3.4. Extracting the Contours

After generating the coarse and fine probability maps,

we combine them into a single cost matrix such that a small

entry in the cost matrix corresponds to a pixel with a large

contour probability value. If cij and fij are the elements of

the coarse and fine probability maps at (i, j), respectively,

then the corresponding entry wij in the cost matrix is

wij = exp (γ(1− cijfij)) , (1)

where the coefficient γ controls the trade-off between

traversing a short but expensive region to get to a cheaper

region, or avoiding expensive regions altogether. We typi-

cally use γ = 5.

To initialize the shortest path search, we train a neural

network that predicts the two end points of the contour [18]

based on the endpoints of the hand-traced coarse contours

(Sec. 3.1). The A* shortest path algorithm is then used to

extract the pixels between these endpoints, guided by cost

matrix w. These pixels form the identifying contour.

4. Identification Based on Extracted Contours

After extracting the identifying contour from an image,

we need to convert it to a representation for matching. For

this, our approach is identical to [34]. Starting from the

A* shortest path as an ordered sequence of (x, y) coordi-

nate pairs, we compute an integral curvature representation

of the contour by sliding multiple disks of increasing radius

along the contour. At each contour point, the ratio of the ar-

eas of a given disk on either side of the contour defines the

integral curvature at the point for a particular scale. Integral

curvature is less sensitive to noise than differential curva-

ture [28], is more robust to changes in viewpoint and pose,

and has been shown to be effective for individual identifica-

tion [18, 34]. Similar to the approach introduced in [16], we

define feature keypoints at local extrema of the representa-

tion. Between all combinations of pairs of these keypoints

we extract a feature descriptor from the corresponding re-

gion in the integral curvature representation. Each descrip-

tor is resampled to a fixed length and normalized. The re-

sult is a set of overlapping curvature descriptors that densely

cover the contour at multiple scales.

For each query image, we combine the feature descrip-

tors extracted from the integral curvature representation

with the local naive Bayes nearest neighbors (LNBNN) al-

gorithm [24] to define a ranking of previously-labeled indi-

viduals from a database. This method was previously shown

to be effective for identifying individuals in [9, 16, 34], be-

cause it effectively ignores information common to multiple

members of a population and focuses on what distinguishes

individuals.

5. Experimental Results

We evaluate the proposed algorithm for contour extrac-

tion in the context of its ability to accurately represent the

contour and of its effect on the accuracy of the rankings

produced by a matching algorithm.

5.1. Data

For humpback whales, we use a real-world photo identi-

fication data set provided by the Cascadia Research Collec-

tive. This data set contains 3,572 distinct humpback whales

across 6,912 encounters.1 For elephants, we use a real-

world photo identification data set provided by Elephants

Alive. This data set contains 132 distinct elephants across

508 encounters. An “encounter“ is defined as a set of one

or a few images taken of a particular individual at the same

time and place. The entire data set is used to evaluate the

ranking performance, while a subset of the images are an-

notated with fine-grained ground truth data as described in

Section 3.1. The latter is used for a quantitative evalua-

tion of the contour extraction algorithm. Importantly, for

training the FCNNs, we take images from animals and en-

counters that are distinct from the identification data sets,

ensuring a clean separation between training and test sets.

For both humpbacks and elephants, detected regions of

interest around the fluke and the ear are resampled while

preserving the aspect ratio, producing a width of 1152 pix-

els for humpback whales and 1024 pixels for elephants. The

brush radius for coarse contour training data is 10 pixels.

The dimension of the grid cell is 5% of the smaller of the

height and width of the region, typically varying between

s = 20 and s = 58 pixels.

5.2. Contour Extraction Results

To evaluate the contour extraction algorithm, we com-

pare the extracted contours to the sparse ground truth. We

would like to understand the frequency of missing and spu-

rious contour sections and, where the extracted and ground

truth contours are close, the accuracy of the extracted con-

tour. Since there is indeed a reasonable amount of overlap

— 90% of humpback flukes and 75% of elephant ears have

coverage of at least 90% — the latter is the most impor-

tant measure because it suggests how well the contour is

described for matching. Hence, we focus on accuracy here.

As a baseline for the evaluation, we use the method

from [34]. Although the first stage of [34] is very similar to

the CG-FCNN, the authors derive the fine-grained cost for

the A* algorithm from the gradient magnitude rather than

our new FG-FCNN.

1This dataset, also used in [34], differs from the re-

cent Kaggle competition https://www.kaggle.com/c/

humpback-whale-identification by having at most two

encounters per individual.

1280



The challenge in measuring accuracy is the sparsity of

the ground truth points. We therefore measure the distance

between each ground truth contour point and the closest

extracted point, and consider the distribution of these dis-

tances. The ideal distribution would be a step function. For

each contour i that has ground-truth points, let Gi be these

points, and let Hi be the set of contour points extracted us-

ing the proposed algorithm. For (sparse) ground-truth point

x, let d(x,Hi) be the distance from x to the closest point

on the extracted contour. Letting s be the aforementioned

dimension of each grid cell, to measure accuracy we restrict

our attention to the subset of Gi where d(x,Hi) < s, and

refer to this subset as G′

i. Ground-truth points in G′

i are the

locations where we measure the accuracy of the extracted

contour “true positives”. For contour i we form the distri-

bution as the function

FTP (i, δ) =
1

|G′

i|

∣

∣

∣
{x ∈ G′

i | d(x,Hi) ≤ δ}
∣

∣

∣
. (2)

This is the “fraction of true positive” contour cells in the

grid where the extracted contour passes within δ of the cell’s

ground-truth point. By computing the means of this mea-

sure over all N ground truth contours, we obtain our sum-

mary distribution:

MFTP (δ) =
1

N

N
∑

i=1

FTP (i, δ). (3)

Function MFTP is plotted for our new algorithm and

for the gradient-driven baseline in Fig. 6 for humpback

whale flukes and Fig. 7 for elephant ears. Fig. 5 illus-

trates the significance of various values of δ on a fluke. For

very small distances, i.e., δ < 3, using the baseline with

the image gradient magnitude outperforms the new algo-

rithm using the FG-FCNN. This is actually expected be-

cause whenever the true contour coincides with sharp in-

tensity discontinuities, we should expect the image gradi-

ent magnitude to provide a more reliable signal than the

learned FG-FCNN contour model. This occurs more of-

ten for humpback flukes, which have frequent high contrast

boundaries against the water or the sky, than it does for ele-

phants. Above these small distances, when δ ≥ 3, using

the FG-FCNN has the same cumulative level of accuracy as

the gradient-based method for flukes and produces substan-

tially better results for elephants. The range δ = 3 to δ = 5,

where the FG-FCNN results catch up to (and pass for ears)

the gradient-based results, is particularly important because

beyond this we begin to see subtle switches between fol-

lowing the correct and incorrect contours (see Fig. 5). Ex-

amples illustrating this are shown in Figs. 8 and 9 where the

FG-FCNN enables the contour extraction algorithm to dis-

tinguish between the true contour and distracting gradients

— changes in skin pigmentation on flukes, and leaves and

Figure 5. For each circle, all points inside are closer than or equal

to the center than the given value of δ.

Figure 6. The mean fraction of true positives within a given dis-

tance for humpback whales.

Figure 7. The mean fraction of true positives within a given dis-

tance for elephants.

branches in the immediate background for elephant ears —

keeping the extracted contour close to the true boundary.

We conclude that use of the FG-FCNN produces nearly

equivalent numerical results to gradient-based methods for

humpback flukes, better numerical results for the more

subtle contours outlining elephant ears, and often success-

fully avoids errors due to following incorrect contours with

strong gradients in both cases.
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Figure 8. The fluke contour extracted using the image gradient

(top) and using the FG-FCNN (bottom). The red arrow indicates a

section of the contour where the image gradient method followed

pigmentation rather than the actual fluke boundary.

Figure 9. The ear contour extracted using the image gradient (left)

and using the FG-FCNN (right). The red arrow indicates a section

of the contour where the gradient-based method followed strong

background signal, but the method using the FG-FCNN stayed

close to the true contour.

5.3. Identification Results

The final test of the significance of the new contour

extraction method is its impact on matching performance.

Since for each query image, the result of matching is

a ranked list of the potentially matching individuals in

the database, we plot the cumulative match characteristic

(CMC) curve — the fraction of queries for which the cor-

rect match has rank ≤ k, for k = 1, 2, 3, . . ..
The baseline results for humpbacks are computed using

the work from [34], which combines a method similar to

the CG-FCNN from this work with gradient magnitude in-

formation for contour extraction. For elephants, the algo-

rithm from [34] serves as one baseline, but we also include

Figure 10. Using the FG-FCNN, which learns a more sophisti-

cated contour appearance model, instead of the gradient improves

the top-1 accuracy from 80% to 85% and the top-5 accuracy from

85% to 89% when using the LNBNN matching algorithm for

humpback whales.

recently reported results from [20] as a second. This algo-

rithm uses a ResNet50 [14] architecture pretrained on Ima-

geNet [10] to extract a feature vector from a bounding box

placed around an elephant’s head. These feature vectors are

used for classification by means of dimensionality reduc-

tion [27] and a support vector machine [7]. In using this

algorithm here, we restrict its use to identification based on

the ear, providing a direct comparison between algorithms.

Figures 10 and 11 plot the CMC curves for humpback

flukes and elephant ears, respectively, for matching based

on the FG-FCNN contours, and for the baseline algorithms.

This shows that for both humpback whales and elephants

replacing the gradient-based term with the FG-FCNN im-

proves the ranking performance. For humpback whales the

top-1 accuracy improves from 80% to 85% and the top-5
accuracy from 85% to 89%, while for elephants the top-1
accuracy improves from 78% to 84% and the top-5 accu-

racy from 88% to 93%. We attribute this to the ability of

the contour extraction algorithm based on the FG-FCNN

to stay close to the true contour and avoid distracting in-

formation that distorts the identifying information. Inter-

estingly, this occurs even for humpback flukes where the

numerical performance of the two contour extraction meth-

ods is essentially equivalent. Figure 12 shows an example

where the matching algorithm correctly identifies an ele-

phant when the contours are extracted using the FG-FCNN,

but not when they are extracted using the gradient.

For elephants, these methods outperform the non-

contour baseline from [20], which achieves a top-1 accuracy

of 34% and a top-5 accuracy of 63% on our data set. One

reason for this is that the data set is small and unbalanced

with respect to the number of images per individual. This

makes it difficult to learn a representation that is invariant

to a wide range of appearance changes, such as coverage
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Figure 11. Using the FG-FCNN, which learns a more sophisti-

cated contour appearance model, instead of the gradient as in [34]

improves the top-1 accuracy improves from 78% to 84% and the

top-5 accuracy from 88% to 93% when using the LNBNN match-

ing algorithm for elephants.

by mud or water, illumination variations, and deformations.

Unfortunately, sample imbalances are almost inevitable for

many wild animal populations. Our algorithm does better

in this regard, but is still limited as our top-1 matching rates

rise quickly from under 40% with a single encounter in the

database to nearly 80% for three. This is not as much of

an issue for humpback flukes where we achieve 85% top-1

rates despite only having one database encounter per ani-

mal. Clearly, elephant ear recognition is currently more dif-

ficult, in part due to ongoing challenges of contour extrac-

tion and in part because the identifying information is more

localized and subtle. An important avenue of future work is

to combine the identifying information from the ears with

identifying information from other parts of the elephant.

6. Summary and Conclusion

We have developed an algorithm for learning a fine-

grained appearance model for contours that distinguish in-

dividual animals, training it using boundaries synthesized

from coarse annotation data. The model captures boundary

information from transitions in color and texture as well as

intensity. We have integrated the model into a complete

contour extraction algorithm that also includes a coarse-

grained contour model and an A* search algorithm. The

contours produced by this algorithm are more accurate than

the contours produced using gradient information, espe-

cially for the subtle boundaries of elephant ears. When in-

tegrated into an existing matching algorithm based on cur-

vature descriptors and LNBNN matching, these contours

produce approximately 5% improvement in top-1 ranking

results for both humpback whale flukes and the ears of

African savanna elephants. Matching works despite hav-

ing a small number of encounters per individual animal, an

important consideration for real-world use.

Figure 12. The top row shows a query image (left) matched to

the correct individual from the database (right) when using the

FG-FCNN for contour extraction, while the bottom row shows the

same query image (left) matched to an incorrect individual (right)

when using the gradient.
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