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Abstract

In this report we explore the use of transfer learning for Convolutional Neural Networks
(CNN) in order to apply networks trained for the popular ILSVRC challenge to a viewpoint
classification problem. In the viewpoint classification task, the network must learn to
distinguish not just between different species of animals, but also between the 8 cardinal
and ordinal viewpoints for each species of animal. We transfered the learning from the pre-
trained accurate OverFeat network architecture, provided by NYU, to achieve a viewpoint
classification accuracy of 80.20 % for grid sampled patches and 87.93 % for animals with
pre-defined bounding boxes.

1 Introduction

Due to the nature of convolutional neural networks, it is possible to train over one dataset and - in a word
- transfer the learning to a new network in order to perform on a different dataset and potentially even
a different task altogether. In this application, the transferred learning can be treated as pre-training for
the new neural network’s architecture and the weights would be further fine-tuned to specialize to the new
task [?]. Transfer learning gives the advantage of not only allowing for custom structures to fit different
types of datasets, but also lets researchers take advantage of the convolutional filters learned on larger, more
complex corpora. This results with a more robust model in less training time compared to starting from
randomly initialized weights and can also help augment datasets that are too small to to train a full CNN on
their own.

In light of the recent successes of convolutional neural networks on large-scale image classification prob-
lems, some researchers have also opted to treat these models as black-box like feature extractors, on top
of which other machine learning algorithms can be trained [?]. Additionally, recent experiments [?] have
shown through visualizations of the lower layers of a convolutional neural network, that the lower layers
tend to learn features salient for extracting object information regardless of class, becoming more special-
ized deeper in the network. For a more thorough survey of transfer learning and the visual properties of each
level of convolutional filters, we refer the reader to the analysis by Yosinski et al. [?].

The OverFeat network [?] is one such pre-trained convolutional neural network, which was trained on the
data provided in the ILSVRC2013 competition [?] and consequently won the localization task in the compe-
tition. This network’s architecture and the weights used during the competition are provided by Sermanet et

al. and is well supported by popular neural network libraries - making it an ideal candidate for transferring
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learned features. Our analysis and the resulting networks we train will be utilizing the convolutional layers
of the accurate OverFeat model as the bottom layers of our network, as detailed in Section 4.1.

The rest of the paper is as follows. Section 2 details the recent work in the computer vision field on convo-
lutional neural networks, transfer learning, and viewpoint estimation. Section 3 details the dataset we used
to train our networks and the collection techniques. Section 4 details the different models we trained for our
viewpoint classification task. Section 5 details the experimental results. Section 6 details an explanation of
the results and a breif overview of future work.

2 Recent Work

Convolutional neural networks have become increasingly popular for computer vision tasks. The learned
kernel convolutions of a neural network are applied to an image in a translation-invariant fashion to produce
a sophisticated recognition task. When trained with back-propagation and gradient descent, they were first
used to great success by LeCun et al. [?] on the MNIST digit recognition task in 1998. More recently, due
in part to the Dropout regularization method [?], convolutional neural networks have been very successful
in object classification with large amounts of classes, like in the ILSVRC competition [?, ?].

Due to the successes of transfer learning, the dataset on which an original network was trained on becomes
very important. The ImageNet ILSVRC2013 challenge provides one such dataset, containing 1.2 million
images labeled with 1000 different classes. These are images of real world objects, including natural and
man-made objects. Thus, this dataset provides a good basis for training a convolutional network for transfer
learning into tasks involving images of real world objects, as many of the lower level features learned by the
network can be reused.

As in [?], the varying viewpoints can be treated as separate parts in a deformable parts model [?]. For
datasets that are not so detailed in their ground-truth, explicit exemplars of each viewpoint [?] can be used
to estimate pose. An alternative approach for viewpoint estimation and automatic classification with neural
networks was detailed by Yang et al. [?]; furthermore, a more detailed survey of pose estimation with neural
networks can be reviewed in this paper.

3 Dataset

African Elephant Giraffe Grevy’s Zebra Plains Zebra

Figure 1: exemplars for each of the 4 species we trained our networks on

3.1 Source Images

The networks trained in this paper are trained from a dataset of 3,817 images containing animals enclosed
with bounding boxes and annotated with species and viewpoint (e.g. elephant front) information saved
in the PASCAL [?] annotation format. The images contain the 4 following species: African Elephants,
Giraffes, Grevy’s Zebras, and Plains Zebras. Example images of each of these species can be found in
Figure 3. The viewpoint of each species is determined relative to the camera, describing essentially what
part of the animal is being seen. The viewpoints of each species is partitioned into eight bins (cardinal Front,
Back, Left, Right and ordinal Front Left, Front Right, Back Left, and Back Right) resulting in 32 viewpoint
classes plus an additional negative class. The analysis of the transfered OverFeat learning is divided into two
datasets extracted from this image dataset: square patches sampled on a grid across the image and the resized
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bounding boxes around each animal in the annotated dataset. It is important to mention that Giraffe and
Grevy’s Zebra images are not provided in the ILSVRC2013 competition dataset, whereas African Elephant
and Plains Zebra images are provided.

3.2 Annotations

To extract the annotation image patches, we simply cropped the bounding boxes of each animal and naively
resize the resulting image to 221x221 pixels, without preserving the original aspect ratio - this is the similar
technique utilized in [?] to prepare images for training. We will refer to these extracted images as the
annotations dataset

1, and does not include negative patches. A total of 5,304 annotations were extracted
from the source images.

3.3 Patches

The grid patches were extracted from a 221x221 pixel sliding window throughout the image, where the
label of each window was assigned by what label overlapped with the most area (giving a negative class
for not overlapping with over 50% of some bounding box’s area). We will refer to these extracted images
as the patches dataset. Due to the dense sampling, the patches dataset provides far more images to train
with than the annotations dataset. One major issue with the patches dataset is that it creates issues of scale
because we did not perform any size normalization, which cannot realistically be done without a pixel-level
segmentation of the image. The resulting scale problem results in patches that are extremely difficult to
classify - even for a human evaluator. A total of 122,854 patches were extracted; sample patches can be
viewed in the Appendix along with the class distribution of the patches can be viewed in Table 7.

4 Models

4.1 OverFeat

OverFeat is a neural network pre-trained for the ILSVRC2013 classification, localization, and detection
tasks. There are two versions available: a fast model and an accurate model. Since we did not notice a
significant difference in speed between these two versions on our Theano GPU implementation, we opted
for the accurate model to utilize more feature dimensions. In order to transfer the learned weights from
OverFeat to our other networks, we construct our networks by starting after the convolutional layers of
OverFeat and fixing the weights. For our experimental purposes, this results in making OverFeat a black-
box feature extractor. The accurate model takes fixed-size input as a 221x221 pixel, 3-channel color image,
whereas the fast model takes as input a 231x231 pixel, 3-channel image. For each dataset, we created two
sets of features based on the output activations of different layers of OverFeat.

1. flat features - the activations from the first non-convolutional, fully-conencted layer of OverFeat
(layer 21), which outputs a flat 4096-dimensional vector.

2. square features - the activations from the last convolutional layer of OverFeat (layer 19), which
gives us tensors consisting of 1024-channel, 5x5 matrices.

Since OverFeat uses rectified linear activations, these features are around 80% to 90% sparse. For more de-
tails on the specific structure of the network, we refer the reader to Sermanet et al.’s paper [?] and Krizhevsky
et al.’s paper [?].

In order to qualitatively assess how well separated the data obtained from OverFeat was by our classes, we
computed a 2-dimensional t-SNE [?] embedding of the flat features computed on the patches dataset, shown
in Figure 4.1 and computer by scikit-learn’s t-SNE implementation [?]. As negatives can oftentimes contain
large parts of an animal and its background, we are unsurprised there is a large amount of confusion between
the species labels. However, we can see that Giraffes, a class that does not exist in ImageNet, is separated
very nicely from the rest of the classes despite OverFeat having never seen that class before. Zebras are

1Networks and algorithms with the subscript A were trained using the annotation training data instead of the patches
training data.
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unsurprisingly mixed in their own cluster, which is likely due to both the images being very similar between
species2 and OverFeat being trained to only recognize Plains Zebras.

t-SNE on patches (species) with negatives t-SNE on patches (species) without negatives

t-SNE on annotations (species) t-SNE on annotations (viewpoints)
for Grevy’s and Plains Zebras

Figure 2: (Species) Red: African Elephant, Yellow: Giraffe, Blue: Zebra Grevy’s, Purple: Zebra Plains,
White: Negative; (Viewpoints) Black: Left-side [Front Left, Left, Back Left], White: Right-side [Front
Right, Right, Back Right], Grey: Front and Back

The t-SNE visualization was also run on the annotations dataset, which has OverFeat patches extracted on
resized, pre-defined bounding boxes. We can see immediately a strikingly clear separation that OverFeat
provides and does an almost perfect job at separating and clustering the images into the correct species. This
result is not surprising considering that the general convolutional filters from OverFeat are able to capture
macro-level details about the animals and the learning can be effectively transferred to classes that were not
trained on. Interestingly, OverFeat cannot effectively separate the left and right-size viewpoints for Grevy’s

2In fact, we had some issues with human annotators mixing up Grevy’s versus Plains Zebras during data collection
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and Plains Zebras for the t-SNE visualization shows much more confusion. This is where the specialization
and fine-tuning of the OverFeat fully-conencted layers can help separate the viewpoints more accurately.

Other than t-SNE, we did attempt to train a generative, autoencoder model in order to visualize the sepa-
ration of the OverFeat feature vectors. Ultimately, due to restrictions in time and limitations of the Caffe
implementation, we were unable to train an effective network. We attribute our difficulties to an inadequate
weight initialization scheme and the network being unable to regenerate the such sparse input vectors that
OverFeat provides.

4.2 Architectures

On top of the flat features, we trained the following four architectures on the patches dataset. All hidden
units were rectified linear units except for the softmax layer, and all models were implemented in Caffe [?].

• Linear: A linear model (i.e. a softmax layer connected directly - with weights - to the data)
• H1: A network with a single hidden layer of 256 units
• H2: A network with two hidden layers: 1024 units and then 256 units.
• H4: A network with four hidden layers of size 2048, 1024, 512, 256

4.3 Parameter Search

Neural networks have a reputation for being notoriously difficult to train because of the relatively large num-
ber of hyper-parameters; having many hyper-parameters to tune results in having to search a very large, high-
dimensional parameter space and - especially for neural networks - testing a particular configuration takes
non-trivial computational and time resources. As described in [?], the search for optimal hyper-parameters
for a given network architecture can be by a manual, grid, or random protocol. If a random search is chosen,
a Bayesian learning algorithm can be used to help evaluate which dimensions and ranges of configurations
offer better accuracy. In order to limit the size of the search space and reduce the complexity of our overall
architectures, we limited the number of hyper-parameters to 5, which are detailed in Table 4.3.

Hyper-Parameter Description

Learning Rate Scale each weight gradient by Learning Rate

Gamma After each Step Size, multiply (decrease) the Learning Rate by Gamma

Step Size After how many iterations to decrease the Learning Rate by Gamma

Momentum Averave the current gradient with the previous gradient by Momentum

Batch Size How many training examples to use in each mini-batch

Table 1: hyper-parameters and their descriptions

For the 4 network architectures that were trained, we randomly searched for optimal hyper-parameters for
each network independently. The final hyper-parameters chosen for each network can be found in Table 7 in
the Appendix.

5 Results

5.1 Patches

In order to establish a baseline for this task, we also trained an SVM with an RBF kernel (� = 1
4096 ) on 25%

of the data (due to time limitations). We also ran a k-nearest-neighbor algorithm with k = 33. The results
are given in Table 7, with the subscript A for the models trained on the annotations dataset. Although the
training and testing sets for the SVM were significantly smaller than the neural networks, the performance
difference between it and the simple Linear model discourage further exploration of this method. The k-NN
is markedly worse than either SVM or neural network, which is unsurprising.
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Between the networks, it is clear that adding a hidden layer greatly improves accuracy, but that adding
too many hidden layers has diminishing returns, and for the patches dataset the network starts overfitting as
more layers are introduced and adequate regularization becomes increasingly elusive. The two layer network
appears to perform the best, and it mimics the number of layers that come after the extracted one in OverFeat.

Algorithm 33-class Accuracy Species Accuracy Viewpoint Accuracy

k-NN 42.86 % 73.55 % 49.97 %
SVM 45.64 % 81.26 % 54.13 %
Linear 54.13 % 87.42 % 73.90 %
H1 63.43 % 90.07 % 78.33 %
H2 66.14 % 91.42 % 80.20 %
H4 65.73 % 91.46 % 74.99 %

Algorithm 32-class Accuracy Species Accuracy Viewpoint Accuracy

k-NNA 25.39 % 33.33 % 25.52 %
SVMA 18.30 % 32.86 % 22.95 %
LinearA 70.74 % 97.66 % 86.88 %
H1A 71.57 % 97.66 % 87.71 %
H2A 72.17 % 97.81 % 87.71 %
H4A 70.97 % 98.11 % 87.93 %

Table 2: hyper-parameters used to train each architecture

A closer inspection of the confusion matrices given in Figure 7 in the appendix shows similar patterns in
confusion. Notably, the negatives (label 16) are often confused for non-negative labels, which is unsurprising
given that they may still contain up to 50% of the bounding box of a labeled animal. Another pattern
noticeable is the confusion between viewpoint for particular species. Elephants seem to suffer from this the
least, however Giraffes and Zebras both end up having the Left and Right viewpoints confused. This can be
explained by the fact that the 4096-dimensional feature vector doesn’t contain explicit spatial information
that could be used to ’undo’ the transposition invariance learned by OverFeat on ImageNet (i.e. a Zebra in
ImageNet is given the same label regardless of whether its facing left or right). However, since a Zebra rump
looks very different from, for example, its flank, the network seems to be able to learn the distinction and
identify those viewpoints. It may also be due to the fact that patches sampled from the right flank of a zebra
do not look very different from those sampled from the left flank at a small scale. While there seems to
be a similar pattern for Giraffes and Elephants, it is not as drastic. Additionally, there is significantly more
species confusion between Plains and Grevy’s Zebras than between any other two species, which may be
a result of the OverFeat network being trained to recognize the general class ’Zebra’ rather than any finer
distinction.

As can be seen in Table 7, the SVM and k-NN baselines perform much worse on this smaller dataset than
the neural networks, which actually perform better than on the patches dataset. We note that since there
are no negative images in the annotations dataset, the lack of aforementioned confusion between a negative
and anything else due to bounding box overlap is not a concern, and may give the performance boost seen
here. However, this does mean that the networks learned may not be capable of providing good detection
capabilities later on. Additionally, in terms of the viewpoint, there are no ambiguous patches like many of
those in Table 7 that even a human would have trouble distinguishing viewpoint from. With all these in
mind, it is more surprising that the SVM and k-NN models did not do nearly as well as they did on the
patches dataset.

The confusion matrices for the annotations, which can be seen in Figure 3, show far less confusion in general,
especially between left and right viewpoints of zebras. This gives greater weight to the idea that the patches
may be indistinct between right and left viewpoints rather than the whole image of the animal. Regardless,
there is still significant confusion between viewpoints in general, though not nearly as much as with the
patches. This may also be due to the lack of a negative class - although there is a softmax unit corresponding
to that class.
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5.2 Annotations

H2A H4A

Figure 3: confusion matrices for select annotations network architectures

6 Discussion and Future Work

Given the extreme class imbalance within the dataset between viewpoints within species, all trained networks
will have performance issues distinguishing between certain viewpoints. If better training data is made
available in the future, the networks can be retrained to potentially do a better job at discriminating between
difficult viewpoints. Furthermore, adding artificial noise could help augment the dataset to correct for class
imbalance, although these techniques are not evaluated in this paper.

In the immediate future, it would make sense to first re-run these experiments with the square features, and
then secondly retrain the entire network (i.e. including every layer before the feature extraction) using the
OverFeat weights for initialization rather than effectively fixing the weights up until the point of feature
extraction. This would allow the network to retrain the lower level features to extract information relevant to
viewpoint as well, at the cost of longer training time. This process is known as ’fine-tuning’, and has been
shown in [?] to be better overall on various splits of the ILSVRC task than holding the weights fixed. Since
they only do object classification in [?], we propose that we might even get better results from fine-tuning.

The failed attempt to train an autoencoder from the sparse OverFeat feature vectors also is an area for
improvement. An effective training of the network could be accomplished by densely encoding the input for
more faithful regeneration; a more involved pre-training approach to initializing the autoencoder can also
be implemented where each layer is trained one at a time as a deep belief network (followed by fine-tuning
the entire stacked autoencoder network through the use of contrastive divergence [?]). This layer-by-layer
approach, outlined in [?] by Hinton, could yield better visualization results grouped by salient features for
image reconstruction, which may prove better clustered by viewpoint.

The next step from a patch-based convolutional neural network (like OverFeat) is to convolve the network
architecture over the entire image and apply the entire pipeline as a convolution, as detailed in [?]. This fully
convolutional approach to image segmentation can be seen as an extremely dense patch sampling and results
in a pixel-level classification map across the entire image, while allowing transfer of a network learned for
pure patch classification to this new task. Thus, the results in this paper should extend to such a network
structure, transferring the learning of a viewpoint-centric view of the world.
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Appendix

Hyper-Parameter Range Begin Range End Range Stride Total Values

Learning Rate 0.005 0.100 0.005 20
Gamma 0.10 0.60 0.05 11
Step Size 1000 15000 1000 15
Momentum 0.85 0.95 0.01 11
Batch Size 64 256 32 7
Total Configurations 254,100

Table 3: hyper-parameter search dimensions

Architecture Learning Rate Gamma Step Size Momentum Batch Size

Linear / LinearA 0.050 0.35 6,000 0.89 128
H1 / H2A 0.035 0.50 10,000 0.88 160
H2 / H2A 0.045 0.45 10,000 0.88 192
H4 0.060 0.40 10,000 0.89 128
H4A 0.050 0.30 10,000 0.90 192

Table 4: hyper-parameters used to train each architecture

African Elephant Giraffe Grevy’s Zebra Plains Zebra

Table 5: sample annotation patches (no negatives) used during training H4A
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African Elephant Giraffe Grevy’s Zebra Plains Zebra Negative

Table 6: sample patches used during training Linear, H1, H2, and H4
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Class Label Species Viewpoint Total Patches Percent of Dataset

0 African Elephant Back 168 0.137 %
1 African Elephant Back Left 218 0.177 %
2 African Elephant Back Right 225 0.183 %
3 African Elephant Front 5,861 4.771 %
4 African Elephant Front Left 3,643 2.965 %
5 African Elephant Front Right 3,855 3.138 %
6 African Elephant Left 1,073 0.873 %
7 African Elephant Right 1,031 0.839 %
8 Giraffe Back 197 0.160 %
9 Giraffe Back Left 1,549 1.261 %

10 Giraffe Back Right 1,491 1.214 %
11 Giraffe Front 2,708 2.204 %
12 Giraffe Front Left 1,899 1.546 %
13 Giraffe Front Right 1,934 1.574 %
14 Giraffe Left 12,344 10.048 %
15 Giraffe Right 12,427 10.115 %
16 Negative - 18,018 14.666 %
17 Grevy’s Zebra Back 221 0.180 %
18 Grevy’s Zebra Back Left 1,513 1.232 %
19 Grevy’s Zebra Back Right 1,523 1.240 %
20 Grevy’s Zebra Front 344 0.280 %
21 Grevy’s Zebra Front Left 342 0.278 %
22 Grevy’s Zebra Front Right 365 0.297 %
23 Grevy’s Zebra Left 9,305 7.574 %
24 Grevy’s Zebra Right 9,365 7.623 %
25 Plains Zebra Back 199 0.162 %
26 Plains Zebra Back Left 755 0.615 %
27 Plains Zebra Back Right 691 0.562 %
28 Plains Zebra Front 40 0.033 %
29 Plains Zebra Front Left 357 0.291 %
30 Plains Zebra Front Right 385 0.313 %
31 Plains Zebra Left 14,231 11.584 %
32 Plains Zebra Right 14,577 11.865 %

Total Patches 122,854
Training Patches 92,140
Test Patches 30,714

Table 7: patch dataset category (species and viewpoint) distribution
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Linear H1

H2 H4

Figure 4: confusion matrices for the patches network architectures
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